181k views
2 votes
Find the zeros of the quadratic polynomial f(x) = 6x²-3, and verify the relationship between the zeros and its coefficients.​

User Tokenyet
by
4.8k points

2 Answers

6 votes

Explanation:

1) zeros of the given function:

6x²-3=0; ⇔ 6(x²-0.5)=0; ⇔ x²=0.5; ⇔


\left[\begin{array}{ccc}x=-√(0.5) \\x=√(0.5) \end{array}

2) relationship:

if to see the equation x²-0.5=0 (ax²+bx+c=0 is standart form!), then the sum of the zeros is '0' (it is 'b' of the standart form), the product of equation roots is '-0.5' (it is 'c' of the standart form).

User Shahar Eldad
by
3.9k points
2 votes


{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

★ The polynomial

f(x) = 6x² - 3


{\large{\textsf{\textbf{\underline{\underline{To \: find :}}}}}}

★ Zeroes of the polynomial f(x) = 6x² - 3


{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

We have,


f(x) = \tt 6 {x}^(2) - 3

Which can also be written as


\implies f(x) = \tt {(√(6) x)}^(2) - { (√(3)) }^(2)

Using a² - b² = (a - b) (a + b)


\implies f(x) = \tt ( √(6) x - √(3) )( √(6) x + √(3) )

To find the zeroes, solve f(x) = 0


\longrightarrow \tt ( √(6) x - √(3) )( √(6) x + √(3) ) = 0

either
\tt √(6) x - √(3) = 0 \: or \: √(6) x + √(3) = 0


\implies \tt √(6) x = √(3 \: ) \: or \: \: √(6) x = - √(3)


\implies \tt x = ( √(3) )/( √(6) ) \: or \: x = - ( √(3) )/( √(6) )


\implies \tt x = ( √(3) )/( √(2 * 3) ) \: or \: x = - ( √(3) )/( √(2 * 3) )


\implies \tt x = \frac{ \cancel{ √(3) }}{ √(2) \: \cancel{√(3)} } \: or \: x = - \frac{ \cancel{ √(3) }}{ √(2) \: \cancel{√(3)} }


\implies \tt x = (1)/( √(2) ) \: \: or \: \: - (1)/( √(2) )

Hence, the zeroes of f(x) = 6x² - 3 are:


\tt \alpha =\sf \boxed {{ \red{ (1)/( √(2) ) } }}\: \: and \: \: \beta =\sf \boxed {{ \red{ - (1)/( √(2) ) } }}

Verification

Sum of zeroes =
( \alpha + \beta )


= \tt (1)/( √(2) ) + \bigg(- (1)/( √(2) ) \bigg)


= \tt (1)/( √(2) ) + - (1)/( √(2) )


= \tt 0

and,
\tt - \frac{Coefficient \: of \: x}{Coefficient \: of \: {x}^(2) }


\tt = - (0)/(6)


\tt = 0


\therefore \tt \: Sum \: of \: zeroes = {\boxed{ \red{\frac{ \tt Coefficient \: of \: x}{ \tt Coefficient \: of \: {x}^(2)}}}}

Also,

Product of zeroes =
\alpha \beta


= (1)/( √(2) ) * - (1)/( √(2) )


= - (1)/( 2 )

and,
\tt - \frac{Constant \: term}{Coefficient \: of \: {x}^(2) }


\tt = ( - 3)/(6)


\tt = ( - 1)/(2)


\therefore \tt \: Product \: of \: zeroes = {\boxed{ \red{\frac{ \tt Constant \: term}{ \tt Coefficient \: of \: {x}^(2)}}}}


\rule{280pt}{2pt}

User Ifesinachi Bryan
by
4.7k points