Solution :
Given :
radius of perigee,
= 10,000 km
radius of apogee,
= 100,000 km
a). Eccentricity of the orbit
![$e=(|r_p-r_a|)/(r_p+r_a)$](https://img.qammunity.org/2021/formulas/engineering/college/tdtitxl02t2pea2il3obo16a34niurg4wk.png)
![$e=(|10,000-100,000|)/(10,000+100,000)$](https://img.qammunity.org/2021/formulas/engineering/college/ao24vssmev5am4bktioy7v6x23k74m93mt.png)
![$e=(9)/(11)$](https://img.qammunity.org/2021/formulas/engineering/college/m8b2gh7jqtlnlnij5zlap9cj5cv1l4vn48.png)
or e = 0.818
b). Semi major axis of the orbit
![$a=(r_p+r_a)/(2)$](https://img.qammunity.org/2021/formulas/engineering/college/lsnuaftx6c0qvzy4e36c5a883yatl9anmr.png)
![$a=(10,000+100,000)/(2)$](https://img.qammunity.org/2021/formulas/engineering/college/2gj3ps5wo5crg1tpx2yfcpnpb9rrdugrhi.png)
= 55,000 km
c). period of orbit
![$T=(2\pi)/(√(\mu))* a^(3/2)$](https://img.qammunity.org/2021/formulas/engineering/college/pols4it2xz7zarkeauw40x69rsundjplic.png)
Replacing μ with
![$398600 \ km^3/s^2$](https://img.qammunity.org/2021/formulas/engineering/college/hdcx0m122zfsryn82lawuoi4kkvyooota7.png)
![$T=(2\pi)/(√(398600))* (55,000)^(3/2)$](https://img.qammunity.org/2021/formulas/engineering/college/tf3ufnan4c7nfytotd57dqnrmtd3spny0q.png)
![$T=128304.04 \ s \left((1 \ hr)/(3600 \ s)\right)$](https://img.qammunity.org/2021/formulas/engineering/college/zljpi6bzlqya2wml8e33m3jywjh03mz5cn.png)
T = 35.64 hr
d). Specific energy of the orbit
![$\varepsilon = -(\mu)/(2a)$](https://img.qammunity.org/2021/formulas/engineering/college/3gkddcvwk7d28ewrwmawq9d80nv84fwo0c.png)
![$\varepsilon = -(398600)/(2 * 55000)$](https://img.qammunity.org/2021/formulas/engineering/college/qvn2z0kacwp3lmjbrdgi1mno8wey60s5kr.png)
![$\varepsilon = -3.62 \ km^2/s^2$](https://img.qammunity.org/2021/formulas/engineering/college/unx9569i3faa58j79o7p4z51di4trswutv.png)
e). the equation of the distance to the focus
![$\theta = \cos^(-1)\left((a(1-e^2))/(r)-(1)/(e)\right)$](https://img.qammunity.org/2021/formulas/engineering/college/sqg291usju0qeosn8pzyd17fbprlzklcsz.png)
![$\theta = \cos^(-1)\left((55000(1-(0.818)^2))/((1000+6378))-(11)/(9)\right)$](https://img.qammunity.org/2021/formulas/engineering/college/nxboc2gd2ihx1bleornhrm15t4c1fq5nun.png)
![$\theta = \cos^(-1)\left((55000(0.33))/((7378))-(11)/(9)\right)$](https://img.qammunity.org/2021/formulas/engineering/college/aykjrsxg0j1nvsiae9pfw0f3vwur6p1qse.png)
![$\theta = \cos^(-1)\left(2.4-1.2\right)$](https://img.qammunity.org/2021/formulas/engineering/college/76qwwrhs5kofp0x3apc3jlqkf4am7hapn0.png)
θ = 1.002°
f).Calculating the angular momentum
![$r_p=(h^2)/(\mu(1+e))$](https://img.qammunity.org/2021/formulas/engineering/college/7h3mw3n733oe8z207vxwxovo97ag80byql.png)
or
![$h=√(r_p \mu(1+e))$](https://img.qammunity.org/2021/formulas/engineering/college/nz8mh8i4ncnbu5w3ah7ejlvju1mifuqg4k.png)
Now calculate the radial velocity
![$v_r=(\mu)/(h) e \sin \theta$](https://img.qammunity.org/2021/formulas/engineering/college/wq4awywdzu0ndq4pbfqyyjjoi1dvekuuce.png)
Substituting for h,
![$v_r=(\mu)/(h)e \sin \theta$](https://img.qammunity.org/2021/formulas/engineering/college/gta6v324j0t0543k95aa1usru9fpmy1pqm.png)
![$v_r=(e\mu \sin \theta)/(√(r_p \mu(1+e)))$](https://img.qammunity.org/2021/formulas/engineering/college/nyt5c1gdwakw0lywkpm3308xzwiooo2xwf.png)
![$v_r=((9)/(11)√(398600) \sin 20)/(√(10,000 (1+0.818)))$](https://img.qammunity.org/2021/formulas/engineering/college/ug55d8prxx2btffgp3qicxmhyf0fmcyew3.png)
![$v_r= 1.30 \ km/s$](https://img.qammunity.org/2021/formulas/engineering/college/bfavuv2onlv9j2bmq1s3dzo0xzttneq4if.png)
Now calculating the azimuthal velocity
![$v_(\perp)=(\mu)/(h)(1+e \cos \theta)$](https://img.qammunity.org/2021/formulas/engineering/college/of021am08aelepvtl3rapu1i2sqswu49ps.png)
![$v_(\perp)=(\mu (1+e \cos \theta))/(√(r_p \mu(1+e)))$](https://img.qammunity.org/2021/formulas/engineering/college/h1dhm73wk5ohkieipggj34q11otq3c1rer.png)
![$v_(\perp)=(√(398600) (1+0.818 \cos 20))/(√(10000(1+0.818)))$](https://img.qammunity.org/2021/formulas/engineering/college/vok9osidq7x5fylwnbuvhn6xrc7wv2ekoy.png)
![$v_(\perp)=7.58 \ km/s$](https://img.qammunity.org/2021/formulas/engineering/college/jbe3ouy7t0irb8csa1x9t8revf69cx0zwc.png)
g). Velocity at perigee
![$v_p=(h)/(r_p)$](https://img.qammunity.org/2021/formulas/engineering/college/m0esm1r1197cx8korqlwqqb40sgme349x8.png)
![$v_p=(√(r_p \mu (1+e)))/(r_p)$](https://img.qammunity.org/2021/formulas/engineering/college/1aqd21vjwe2h23si37ecch75hp87vxt9v5.png)
![$v_p=(√(10000 (398600) (1+0.818)))/(10000)$](https://img.qammunity.org/2021/formulas/engineering/college/83ldnqpus60cw9qyadhrignh5y7d116us2.png)
![$v_p=8.52 \ km/s$](https://img.qammunity.org/2021/formulas/engineering/college/2rhs0ehd2q133zt52kezkjxm3k8k3szfuc.png)
Now calculate the velocity of the apogee
![$v_a=(h)/(r_a)$](https://img.qammunity.org/2021/formulas/engineering/college/1kpzuzah6iio7yx4lpbqq3vh9eq37exrkr.png)
![$v_a=(√(r_p \mu (1+e)))/(r_a)$](https://img.qammunity.org/2021/formulas/engineering/college/ltvf9uggdbehu1dlh6zu74zbakke60y2yg.png)
![$v_p=(√(10000 (398600) (1+0.818)))/(100000)$](https://img.qammunity.org/2021/formulas/engineering/college/wu82381ucd5jng28e4nhgkrv6xyinx9mnx.png)
![$v_a= 0.85 \ km/s$](https://img.qammunity.org/2021/formulas/engineering/college/td0fq3qgvdwzgi4n0nns7fumhrmteb44u6.png)