Answer:
Pythagorean identity sin²θ+cos²θ = 1 is true for the angle θ =
![(5\pi )/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1ecf50m50znqtwuqd53sdoxk90bqpwv96q.png)
Explanation:
At first, let us simplify the left side of the identity
∵ The left side is sin²Ф + cos²Ф
∵ Ф =
⇒ lies in the 4th quadrant
∴ The left side is sin²(
) + cos²(
)
→ Let us write the values of sin(
) and cos(
)
∵ sin(
) =
⇒ sine an angle in the 4th quadrant is -ve
∵ cos(
) =
⇒ cosine an angle in the 4th quadrant is +ve
→ Substitute them in the left side
∵ sin²(
) + cos²(
) = [
]² + [
]²
∴ sin²(
) + cos²(
) = [
] + [
]
∴ sin²(
) + cos²(
) = [
]
∴ sin²(
) + cos²(
) = 1
∵ The right side = 1
∴ Left side = Right side
∴ sin²(
) + cos²(
) = 1 ⇒ proved
∴ Pythagorean identity sin²θ+cos²θ = 1 is true for the angle θ =
![(5\pi )/(3)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/1ecf50m50znqtwuqd53sdoxk90bqpwv96q.png)