Answer:
There is a 97.59% that diameter of the product will fall in the specified range.
Explanation:
Let X be the r.v. the diameter of a product
X~N(12.5, (0.010)²)
P(12.48 < X < 12.53) = P(X < 12.53) - P(X < 12.48)
Convert the x-values to corresponding z-values
![Z_(1) = (12.48 - 12.50)/(0.01) = -2\\\\Z_(2) = (12.53 - 12.50)/(0.01) = 3\\\\](https://img.qammunity.org/2021/formulas/mathematics/college/f6fpld7h7rwued64pdl6sq9alho8d9u9eb.png)
Then, using the standard normal distribution cumulative probability tables:
![P(X < 12.53) - P(X < 12.48) = P(Z < 3) - P(Z < -2)\\\\= P(Z < 3) - (1 - P(Z < 2))\\\\= 0.9987 - (1 - 0.9772)\\\\= 0.9987 - 0.0228\\\\= 0.9759](https://img.qammunity.org/2021/formulas/mathematics/college/hqlomkc0g8pqr46kecmyr95453eobxvz8s.png)