149k views
4 votes
Q1W7 Learning Task 1 (Introduction)

Factoring Polynomials

On the chart below, find a factor in Column B of each of the given polynomials in Column A using the Factor Theorem.
Column A
1. x² + 6x + 8
2. x³ - 7x + 6
3. x³ - 2x² - 5x + 6
Column B
x-3
x-1
x+2
x+3
x+1

1 Answer

4 votes

Answer:

Column A Column B

1. x² + 6x + 8 x-3,x+2

2. x³ - 7x + 6 x+1, x+2, x+3

3. x³ - 2x² - 5x + 6 x-1, x+2, x-3

Explanation:

Column A Column B

1. x² + 6x + 8 x-3,x+2

2. x³ - 7x + 6 x+1, x+2, x+3

3. x³ - 2x² - 5x + 6 x-1, x+2, x-3

Using Factor theorem we put values of x = ±1,±2,±3 in each of the polynomials unless we get a zero.

1. x² + 6x + 8

= 1+6(1) +8= 15

1. x² + 6x + 8

4+ 12+8 = 24

1. x² + 6x + 8

(-1)² + 6(-1)+ 8

= 1-6+8= 3

1. x² + 6x + 8

(-2)² + 6(-2)+ 8

= 4-12+8= 0

1. x² + 6x + 8

(3)²+ 6(3) +8

= 9+18+8 ≠ 0

1. x² + 6x + 8

(-3)²+ 6(-3) +8

= 9-18+8 =-1

For this polynomial we have x+2= 0 or x=-2, x-3= 0 , x=3

2. x³ - 7x + 6

1-7+6= 0

2. x³ - 7x + 6

(-1)³-7(-1) +6

= 13-1≠0

2. x³ - 7x + 6

(2)³-7(2) +6

= 8-14+6= 0

2. x³ - 7x + 6

(-2)³-7(-2) +6

= -8 +14+6

2. x³ - 7x + 6

(-3)³-7(-3) +6

= -27+21+6 = 0

For this polynomial we have x+1= 0 , x+2 = 0 and x+3= 0, or x=-1,-2,-3

3. x³ - 2x² - 5x + 6

(1)³-2(1)²-5(1)+6

= 0

3. x³ - 2x² - 5x + 6

(-1)³-2(-1)²-5(-1)+6

= -1 -2 +5+6

=8

3. x³ - 2x² - 5x + 6

(2)³-2(2)²-5(2)+6

= 8-8-10+6

=-4

3. x³ - 2x² - 5x + 6

(-2)³-2(-2)²-5(-2)+6

= -8-8+10+6

=0

3. x³ - 2x² - 5x + 6

(3)³-2(3)²-5(3)+6

= 27-18-15+6

=0

3. x³ - 2x² - 5x + 6

(-3)³-2(-3)²-5(-3)+6

= -27-18+15+6

=-14

For this polynomial we have x-1= 0 ,x+2=0, x-3= 0or x=1,-2,3

User Afuous
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories