Answer:
Explanation:
1). Let the equation of a line is,
y = mx + b
Here, m = slope of the line
b = y-intercept
From the graph attached,
Slope =
=
![(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/middle-school/r8zl28n0vf0ogg71i3r53apxva24c1inf4.png)
y-intercept = -2
Equation → y =
![(1)/(4)x-2](https://img.qammunity.org/2021/formulas/mathematics/college/m1xwxt3vkmnxqlc44q1rd52rhsvlv7hq3j.png)
2). Slope of the line =
![\frac{\text{Rise}}{\text{Run}}=(3)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/6908imbwgarmeeej6h2swwxqmy4ltg42zp.png)
y-intercept 'b' = -3
Equation → y =
![(3)/(4)x-4](https://img.qammunity.org/2021/formulas/mathematics/college/5iol6cw11e2t3o12qjnamfabllexs56hbw.png)
3). Slope of the line =
![\frac{\text{Rise}}{\text{Run}}=(-5)/(0.75)](https://img.qammunity.org/2021/formulas/mathematics/college/53dug1pc0p1a6viy5ej3yjmuaghznsmvg5.png)
=
![-(20)/(3)](https://img.qammunity.org/2021/formulas/mathematics/high-school/zjzbflgf46dp3qru6neywb8jwk8ri75z95.png)
y-intercept = 5
Equation → y =
![-(20)/(3)+5](https://img.qammunity.org/2021/formulas/mathematics/college/gr8xs1apu9u2875y9q4x1945gqbojxu9ev.png)
4). Slope of the line =
![\frac{\text{Rise}}{\text{Run}}=(-2)/(4)=-(1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/avck61novu7judk1yg4dd3puri6na5iugl.png)
y-intercept = 4
Equation → y =
![-(1)/(2)x+4](https://img.qammunity.org/2021/formulas/mathematics/college/2xes8axjnwz7ct4mxfe36dg10s3tr6sz8v.png)
5). Since, line is passing through origin (0, 0)
y-intercept = 0
Slope =
![\frac{\text{Rise}}{\text{Run}}=(1)/(1)](https://img.qammunity.org/2021/formulas/mathematics/college/me8lfp6kn07mohq29jsmkl89h4wpytiett.png)
Equation → y = x
6). Slope of the line =
![\frac{\text{Rise}}{\text{Run}}=(1)/(4)](https://img.qammunity.org/2021/formulas/mathematics/college/f5w99irqedfz837ksug78nnvc30q6r5nye.png)
y-intercept = -4
Equation → y =
![(1)/(4)x-4](https://img.qammunity.org/2021/formulas/mathematics/college/xhdi4uzkm1joxujch2hfh786hbqi89zz85.png)