59.5k views
4 votes
Use the Fundamental Theorem of Calculus to find the "area under curve" of

f
(
x
)
=
6
x
+
19
between
x
=
12
and
x
=
15
.

1 Answer

3 votes

Answer:


\displaystyle A = 300

General Formulas and Concepts:

Calculus

Integrals

  • Definite Integrals
  • Area under the curve
  • Integration Constant C

Integration Rule [Reverse Power Rule]:
\displaystyle \int {x^n} \, dx = (x^(n + 1))/(n + 1) + C

Integration Rule [Fundamental Theorem of Calculus 1]:
\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Area of a Region Formula:
\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx

Explanation:

Step 1: Define

Identify

f(x) = 6x + 19

Interval [12, 15]

Step 2: Find Area

  1. Substitute in variables [Area of a Region Formula]:
    \displaystyle A = \int\limits^(15)_(12) {(6x + 19)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle A = \int\limits^(15)_(12) {6x} \, dx + \int\limits^(15)_(12) {19} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle A = 6\int\limits^(15)_(12) {x} \, dx + 19\int\limits^(15)_(12) {} \, dx
  4. [Integrals] Integrate [Integration Rule - Reverse Power Rule]:
    \displaystyle A = 6((x^2)/(2)) \bigg| \limits^(15)_(12) + 19(x) \bigg| \limits^(15)_(12)
  5. Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
    \displaystyle A = 6((81)/(2)) + 19(3)
  6. Simplify:
    \displaystyle A = 300

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

Book: College Calculus 10e

User Gove
by
9.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories