Answer:
![\displaystyle A = 300](https://img.qammunity.org/2021/formulas/mathematics/college/8cjnjvtfnt98ir10e97pyy62j0xi76csda.png)
General Formulas and Concepts:
Calculus
Integrals
- Definite Integrals
- Area under the curve
- Integration Constant C
Integration Rule [Reverse Power Rule]:
Integration Rule [Fundamental Theorem of Calculus 1]:
Integration Property [Multiplied Constant]:
Integration Property [Addition/Subtraction]:
Area of a Region Formula:
![\displaystyle A = \int\limits^b_a {[f(x) - g(x)]} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/8yomppr4m10wil0api6m0lag5b7hnc5c9y.png)
Explanation:
Step 1: Define
Identify
f(x) = 6x + 19
Interval [12, 15]
Step 2: Find Area
- Substitute in variables [Area of a Region Formula]:
![\displaystyle A = \int\limits^(15)_(12) {(6x + 19)} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/35rxtk4zt7hzra6q7tozudrhf10naqs4o7.png)
- [Integral] Rewrite [Integration Property - Addition/Subtraction]:
![\displaystyle A = \int\limits^(15)_(12) {6x} \, dx + \int\limits^(15)_(12) {19} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/nrq56hr4v2s2m2mtncepotqo4k85pxzigx.png)
- [Integrals] Rewrite [Integration Property - Multiplied Constant]:
![\displaystyle A = 6\int\limits^(15)_(12) {x} \, dx + 19\int\limits^(15)_(12) {} \, dx](https://img.qammunity.org/2021/formulas/mathematics/college/c4k2xgi7jogs7mutgyyebvwgetqavlt0iw.png)
- [Integrals] Integrate [Integration Rule - Reverse Power Rule]:
![\displaystyle A = 6((x^2)/(2)) \bigg| \limits^(15)_(12) + 19(x) \bigg| \limits^(15)_(12)](https://img.qammunity.org/2021/formulas/mathematics/college/3qwoadsc0plcsg3zlifb8bp9jthopi20gj.png)
- Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]:
![\displaystyle A = 6((81)/(2)) + 19(3)](https://img.qammunity.org/2021/formulas/mathematics/college/4bu3v48uys9aezi79v9ngk8gcm5ixbb4v3.png)
- Simplify:
![\displaystyle A = 300](https://img.qammunity.org/2021/formulas/mathematics/college/8cjnjvtfnt98ir10e97pyy62j0xi76csda.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e