Answer:
a.
• In standard form : x² - 4 = 0
• In factored form : (x - 2)(x + 2) = 0
b.
• In factored form : (x + 7)(x + 1) = 0
• In standard form : x² + 8x + 7 = 0
Explanation:
a) Consider the quadratic expression:
P(x) = ax² + bx + c
• (0 , -4) ∈ Table ⇒ P(0) = -4 ⇒ a(0)² + b(0) + c = -4
⇒ c = -4
• (-1 , -3) ∈ Table ⇒ P(-1) = -3 ⇒ a(-1)² + b(-1) - 4 = -3
⇒ a - b = 1
• (1 , -3) ∈ Table ⇒ P(1) = -3 ⇒ a(1)² + b(1) - 4 = -3
⇒ a + b = 1
Solving the system for a and b :
a - b = 1
a + b = 1
⇒ 2a = 2 and 2b = 0
⇒ a = 1 and b = 0
Conclusion:
The quadratic equation P = 0 for the table is :
• In standard form : x² - 4 = 0
• In factored form : (x - 2)(x + 2) = 0
………………………………………………………………………
b) Consider the quadratic expression:
Q(x) = a'x² + b'x + c'
Factored form :
Q(x) can be written in the form Q(x) = m(x - p)(x + q)
• (-7 , 0) ∈ Table ⇒ Q(x) = m(x − -7)(x - q) = m(x + 7)(x - q)
• (-1 , 0) ∈ Table ⇒ Q(x) = m(x + 7)(x − -1) = m(x + 7)(x + 1)
• (0 , 7) ∈ Table ⇒ Q(0) = 7 ⇒ m(0 + 7)(0 + 1) = 7
⇒ 7m = 7 ⇒ m = 1
Therefore ,
Q(x) = (x + 7)(x + 1)
Equation of the table : (x + 7)(x + 1) = 0
Q in Standard form :
Just factor (x + 7)(x + 1)
⇒ x² + x + 7x + 7 = x² + 8x + 7
Equation of the table : x² + 8x + 7 = 0