167k views
7 votes
NO LINKS!!!! Find the Lateral Area, Total Surface Area, and Volume. Round your answer to two decimal places.​

NO LINKS!!!! Find the Lateral Area, Total Surface Area, and Volume. Round your answer-example-1
User ZeFrenchy
by
8.3k points

2 Answers

5 votes

#1

  • l=6
  • b=4
  • h=10

LsA

  • 2×h(l+b)
  • 2(10)(6+4)
  • 200.00m²

TSA

  • 2(lb+bh+lh)
  • 2(6×4+4×10+10×6)
  • 2(24+40+60)
  • 248.00m²

Volume.

  • lbh
  • 10(6)(4)
  • 240m³

#2

  • l=5ft
  • b=8ft

LSA

  • 3lb
  • 2(5)(8)
  • 120ft²

TSA

Hypotenuse=√5²+8²=√89=9.4

  • 5(8)+9.4(12)+12(8)+5(12)
  • 40+112.8+96+60
  • 308.8ft²

Volume

  • Area of base×Height
  • 1/2(5)(8)(12)
  • 20(12)
  • 240ft³
User Heshan Perera
by
8.0k points
3 votes

Answer:

Lateral Surface Area: The total surface area of a three-dimensional object, excluding the bases.

Question 5

Figure: Rectangular prism

Given:

  • length (
    l) = 10 m
  • width (
    w) = 4 m
  • height (
    h) = 6 m

Lateral Surface Area


\begin{aligned}\textsf{L.A. of a rectangular prism} & = 2h(l+w)\\\implies \sf L.A. & = \sf 2 \cdot 6(10+4)\\& = \sf 168\:\:m^2\end{aligned}

Total Surface Area


\begin{aligned}\textsf{T.A. of a rectangular prism} & = 2(lw+lh+wh)\\\implies \sf T.A. & = 2(10 \cdot 4+10 \cdot 6+4 \cdot 6)\\& = 248\:\: \sf m^2\end{aligned}

Volume


\begin{aligned}\textsf{Volume of a rectangular prism} & = whl\\\implies \sf T.A. & = 4 \cdot 6 \cdot 10\\& = 240\:\: \sf m^3\end{aligned}

Question 6

Figure: Triangular Prism

The bases of a triangular prism are the triangles.

First, find the hypotenuse of the right triangular base using Pythagoras' Theorem
a^2+b^2=c^2 where a and b are the legs and c is the hypotenuse.


\implies 5^2+8^2=c^2


\implies c^2=89


\implies c=√(89)

Lateral Surface Area

The L.A. is made up of 3 rectangles, each with a length of 12 ft and a width of one side of the triangular base.


\begin{aligned}\implies \sf L.A. & = \sf 12(8+5+√(89))\\& = \sf 269.21\:\:ft^2\end{aligned}

Total Surface Area

The T.A. is made up of the L.A. plus the areas of the triangular bases.


\begin{aligned}\textsf{Area of a triangle} & = (1)/(2)bh\\\implies \sf A & = (1)/(2) \cdot 8 \cdot 5\\& = 20\:\: \sf ft^2\end{aligned}


\begin{aligned}\implies \sf T.A. & = \sf L.A.+2\:base\:areas\\ & = 269.21+2(20)\\& = 309.21\:\: \sf ft^2\:(2\:d.p.)\end{aligned}

Volume


\begin{aligned}\textsf{Volume of a triangular prism} & = \sf base\:area * height\\\implies \sf Vol. & = 20 \cdot 12\\& = 240\:\: \sf ft^3\end{aligned}

User Smaran
by
8.3k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories