Answer:
Lateral Surface Area: The total surface area of a three-dimensional object, excluding the bases.
Question 5
Figure: Rectangular prism
Given:
- length (
) = 10 m - width (
) = 4 m - height (
) = 6 m
Lateral Surface Area
![\begin{aligned}\textsf{L.A. of a rectangular prism} & = 2h(l+w)\\\implies \sf L.A. & = \sf 2 \cdot 6(10+4)\\& = \sf 168\:\:m^2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/w6cmj58m9xut5trzcrplrrucfbmka7whrs.png)
Total Surface Area
![\begin{aligned}\textsf{T.A. of a rectangular prism} & = 2(lw+lh+wh)\\\implies \sf T.A. & = 2(10 \cdot 4+10 \cdot 6+4 \cdot 6)\\& = 248\:\: \sf m^2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/9yprn0xq82d80kvz0wbxdjikbqzuwiim6z.png)
Volume
![\begin{aligned}\textsf{Volume of a rectangular prism} & = whl\\\implies \sf T.A. & = 4 \cdot 6 \cdot 10\\& = 240\:\: \sf m^3\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/8zslmnunngbmudck5biql6guwj3of6z9p1.png)
Question 6
Figure: Triangular Prism
The bases of a triangular prism are the triangles.
First, find the hypotenuse of the right triangular base using Pythagoras' Theorem
where a and b are the legs and c is the hypotenuse.
![\implies 5^2+8^2=c^2](https://img.qammunity.org/2023/formulas/mathematics/college/ya4o6q13h5a4dibbogwrm3w2s8cqqdf5i8.png)
![\implies c^2=89](https://img.qammunity.org/2023/formulas/mathematics/college/armkknuxz40aj81k5xvqkuyxlag7shtjyl.png)
![\implies c=√(89)](https://img.qammunity.org/2023/formulas/mathematics/college/hxg47r1qa8h71xno66bxmq8meqy58czw83.png)
Lateral Surface Area
The L.A. is made up of 3 rectangles, each with a length of 12 ft and a width of one side of the triangular base.
![\begin{aligned}\implies \sf L.A. & = \sf 12(8+5+√(89))\\& = \sf 269.21\:\:ft^2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/k9gy39805fr5iiyyltaavh6c9oyc3isnes.png)
Total Surface Area
The T.A. is made up of the L.A. plus the areas of the triangular bases.
![\begin{aligned}\textsf{Area of a triangle} & = (1)/(2)bh\\\implies \sf A & = (1)/(2) \cdot 8 \cdot 5\\& = 20\:\: \sf ft^2\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/580cwiil9lk5eedxvpm9i0w0a3od1xzb6d.png)
![\begin{aligned}\implies \sf T.A. & = \sf L.A.+2\:base\:areas\\ & = 269.21+2(20)\\& = 309.21\:\: \sf ft^2\:(2\:d.p.)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/zjjyrpegibf9aks9qxftfaeu9mdoxduo3w.png)
Volume
![\begin{aligned}\textsf{Volume of a triangular prism} & = \sf base\:area * height\\\implies \sf Vol. & = 20 \cdot 12\\& = 240\:\: \sf ft^3\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/college/gq366nu1kqhxufw85banfovj15gbzih78v.png)