167k views
7 votes
NO LINKS!!!! Find the Lateral Area, Total Surface Area, and Volume. Round your answer to two decimal places.​

NO LINKS!!!! Find the Lateral Area, Total Surface Area, and Volume. Round your answer-example-1
User ZeFrenchy
by
5.2k points

2 Answers

5 votes

#1

  • l=6
  • b=4
  • h=10

LsA

  • 2×h(l+b)
  • 2(10)(6+4)
  • 200.00m²

TSA

  • 2(lb+bh+lh)
  • 2(6×4+4×10+10×6)
  • 2(24+40+60)
  • 248.00m²

Volume.

  • lbh
  • 10(6)(4)
  • 240m³

#2

  • l=5ft
  • b=8ft

LSA

  • 3lb
  • 2(5)(8)
  • 120ft²

TSA

Hypotenuse=√5²+8²=√89=9.4

  • 5(8)+9.4(12)+12(8)+5(12)
  • 40+112.8+96+60
  • 308.8ft²

Volume

  • Area of base×Height
  • 1/2(5)(8)(12)
  • 20(12)
  • 240ft³
User Heshan Perera
by
4.8k points
3 votes

Answer:

Lateral Surface Area: The total surface area of a three-dimensional object, excluding the bases.

Question 5

Figure: Rectangular prism

Given:

  • length (
    l) = 10 m
  • width (
    w) = 4 m
  • height (
    h) = 6 m

Lateral Surface Area


\begin{aligned}\textsf{L.A. of a rectangular prism} & = 2h(l+w)\\\implies \sf L.A. & = \sf 2 \cdot 6(10+4)\\& = \sf 168\:\:m^2\end{aligned}

Total Surface Area


\begin{aligned}\textsf{T.A. of a rectangular prism} & = 2(lw+lh+wh)\\\implies \sf T.A. & = 2(10 \cdot 4+10 \cdot 6+4 \cdot 6)\\& = 248\:\: \sf m^2\end{aligned}

Volume


\begin{aligned}\textsf{Volume of a rectangular prism} & = whl\\\implies \sf T.A. & = 4 \cdot 6 \cdot 10\\& = 240\:\: \sf m^3\end{aligned}

Question 6

Figure: Triangular Prism

The bases of a triangular prism are the triangles.

First, find the hypotenuse of the right triangular base using Pythagoras' Theorem
a^2+b^2=c^2 where a and b are the legs and c is the hypotenuse.


\implies 5^2+8^2=c^2


\implies c^2=89


\implies c=√(89)

Lateral Surface Area

The L.A. is made up of 3 rectangles, each with a length of 12 ft and a width of one side of the triangular base.


\begin{aligned}\implies \sf L.A. & = \sf 12(8+5+√(89))\\& = \sf 269.21\:\:ft^2\end{aligned}

Total Surface Area

The T.A. is made up of the L.A. plus the areas of the triangular bases.


\begin{aligned}\textsf{Area of a triangle} & = (1)/(2)bh\\\implies \sf A & = (1)/(2) \cdot 8 \cdot 5\\& = 20\:\: \sf ft^2\end{aligned}


\begin{aligned}\implies \sf T.A. & = \sf L.A.+2\:base\:areas\\ & = 269.21+2(20)\\& = 309.21\:\: \sf ft^2\:(2\:d.p.)\end{aligned}

Volume


\begin{aligned}\textsf{Volume of a triangular prism} & = \sf base\:area * height\\\implies \sf Vol. & = 20 \cdot 12\\& = 240\:\: \sf ft^3\end{aligned}

User Smaran
by
5.6k points