105k views
21 votes
Find the Lateral Area, Total Surface Area and Volume. Round your answer to two decimal places.​

Find the Lateral Area, Total Surface Area and Volume. Round your answer to two decimal-example-1
User ILS
by
3.5k points

1 Answer

10 votes

Answer + Step-by-step explanation:

11.

slant height = √(h^2+(1÷4)×a^2) = √(12^2+(1÷4)×10^2) = 13 yd

L.A = 4 x (1/2) a × slant height = 4×(1÷2)×10×13 = 260 yd²

T.A = base + L.A = 10² + 260 = 360 yd²

Vol = V = (1/3)a²h = (1÷3)×10^2×12 = 400 yd³

…………………………………………………………

12.

slant height = √(7^2+2.8^2) = 7.539230729988 in

L.A = 5×(1÷2)×(7.539230729988×4) = 75.39230729988

T.A = (1÷2)×((5×4)×2.8) + 75.39230729988 = 28 + 75,39230729988

= 103.39230729988

Vol = (1÷3)×28×7 = 65.333333333333

…………………………………………………………

13.

slant height = √(6^2+8^2) = 10 ft

L.A = π×6×10 = 60π ft²

T.A = π×6² + 60π = 96π ft²

Vol = (π×36×8)÷3 = 96π ft³

…………………………………………………………

14.

height = √(15^2-8^2) = 12.68857754045 m

L.A = π×8×15 = 120π m²

T.A = π×8² + 120π = 184π m²

Vol = (1÷3)×((π×8^2)× 12.68857754045) = 850.396629025753 m³

User Kise
by
4.0k points