105k views
21 votes
Find the Lateral Area, Total Surface Area and Volume. Round your answer to two decimal places.​

Find the Lateral Area, Total Surface Area and Volume. Round your answer to two decimal-example-1
User ILS
by
7.9k points

1 Answer

10 votes

Answer + Step-by-step explanation:

11.

slant height = √(h^2+(1÷4)×a^2) = √(12^2+(1÷4)×10^2) = 13 yd

L.A = 4 x (1/2) a × slant height = 4×(1÷2)×10×13 = 260 yd²

T.A = base + L.A = 10² + 260 = 360 yd²

Vol = V = (1/3)a²h = (1÷3)×10^2×12 = 400 yd³

…………………………………………………………

12.

slant height = √(7^2+2.8^2) = 7.539230729988 in

L.A = 5×(1÷2)×(7.539230729988×4) = 75.39230729988

T.A = (1÷2)×((5×4)×2.8) + 75.39230729988 = 28 + 75,39230729988

= 103.39230729988

Vol = (1÷3)×28×7 = 65.333333333333

…………………………………………………………

13.

slant height = √(6^2+8^2) = 10 ft

L.A = π×6×10 = 60π ft²

T.A = π×6² + 60π = 96π ft²

Vol = (π×36×8)÷3 = 96π ft³

…………………………………………………………

14.

height = √(15^2-8^2) = 12.68857754045 m

L.A = π×8×15 = 120π m²

T.A = π×8² + 120π = 184π m²

Vol = (1÷3)×((π×8^2)× 12.68857754045) = 850.396629025753 m³

User Kise
by
8.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories