23.3k views
0 votes
Factorise a³ - b³ + 4a-4b

1 Answer

2 votes

Answer:


a^3-b^3+4a-4b:\:\left(a-b\right)\left(a^2+ab+b^2+4\right)

Explanation:

Given the expression


a^3-b^3+4a-4b

solving the expression


a^3-b^3+4a-4b

as


  • a^3-b^3


\mathrm{Apply\:Difference\:of\:Cubes\:Formula:\:}x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)


a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)

also


  • 4a-4b


\mathrm{Factor\:out\:common\:term\:}4


=4\left(a-b\right)

so the expression becomes


=\left(a-b\right)\left(a^2+ab+b^2\right)+4\left(a-b\right)


\mathrm{Factor\:out\:common\:term\:}\left(a-b\right)


=\left(a-b\right)\left(a^2+ab+b^2+4\right)

Therefore,


a^3-b^3+4a-4b:\:\left(a-b\right)\left(a^2+ab+b^2+4\right)

User Akhil V Suku
by
7.9k points

Related questions

asked May 5, 2024 24.9k views
Lily Finley asked May 5, 2024
by Lily Finley
7.8k points
2 answers
0 votes
24.9k views
asked May 25, 2024 172k views
Expdiant asked May 25, 2024
by Expdiant
8.3k points
2 answers
4 votes
172k views
asked Jun 12, 2024 59.6k views
David Bonnet asked Jun 12, 2024
by David Bonnet
7.8k points
1 answer
0 votes
59.6k views