23.3k views
0 votes
Factorise a³ - b³ + 4a-4b

1 Answer

2 votes

Answer:


a^3-b^3+4a-4b:\:\left(a-b\right)\left(a^2+ab+b^2+4\right)

Explanation:

Given the expression


a^3-b^3+4a-4b

solving the expression


a^3-b^3+4a-4b

as


  • a^3-b^3


\mathrm{Apply\:Difference\:of\:Cubes\:Formula:\:}x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)


a^3-b^3=\left(a-b\right)\left(a^2+ab+b^2\right)

also


  • 4a-4b


\mathrm{Factor\:out\:common\:term\:}4


=4\left(a-b\right)

so the expression becomes


=\left(a-b\right)\left(a^2+ab+b^2\right)+4\left(a-b\right)


\mathrm{Factor\:out\:common\:term\:}\left(a-b\right)


=\left(a-b\right)\left(a^2+ab+b^2+4\right)

Therefore,


a^3-b^3+4a-4b:\:\left(a-b\right)\left(a^2+ab+b^2+4\right)

User Akhil V Suku
by
4.6k points