106k views
3 votes
What is the roots of f(x)=-x^2-6x-14

User Hariszaman
by
5.1k points

1 Answer

2 votes

Answer:


x=-3\pm i √(5)

General Formulas and Concepts:

Pre-Algebra

  • Order of Operations: BPEMDAS
  • Equality Properties

Algebra I

  • Standard Form: ax² + bx + c = 0
  • Quadratic Formula:
    x=(-b\pm√(b^2-4ac) )/(2a)

Algebra II

  • Imaginary roots: √-1 = i

Explanation:

Step 1: Define function

f(x) = -x² - 6x - 14

Step 2: Set up

  1. Set equation equal to 0: -x² - 6x - 14 = 0
  2. Factor out -1: -(x² + 6x + 14) = 0
  3. Divide both sides by -1: x² + 6x + 14 = 0

Step 3: Define variables

a = 1

b = 6

c = 14

Step 4: Find roots

  1. Substitute:
    x=(-6\pm√(6^2-4(1)(14)) )/(2(1))
  2. Exponents:
    x=(-6\pm√(36-4(1)(14)) )/(2(1))
  3. Multiply:
    x=(-6\pm√(36-56) )/(2)
  4. Subtract:
    x=(-6\pm√(-20) )/(2)
  5. Factor:
    x=(-6\pm√(-1) √(20) )/(2)
  6. Simplify:
    x=(-6\pm2i √(5) )/(2)
  7. Factor:
    x=(2(-3\pm i √(5) ))/(2)
  8. Divide:
    x=-3\pm i √(5)
User Josh Grosso
by
5.3k points