Answer:

General Formulas and Concepts:
Pre-Algebra
- Order of Operations: BPEMDAS
- Equality Properties
Algebra I
- Standard Form: ax² + bx + c = 0
- Quadratic Formula:

Algebra II
Explanation:
Step 1: Define function
f(x) = -x² - 6x - 14
Step 2: Set up
- Set equation equal to 0: -x² - 6x - 14 = 0
- Factor out -1: -(x² + 6x + 14) = 0
- Divide both sides by -1: x² + 6x + 14 = 0
Step 3: Define variables
a = 1
b = 6
c = 14
Step 4: Find roots
- Substitute:

- Exponents:

- Multiply:

- Subtract:

- Factor:

- Simplify:

- Factor:

- Divide:
