172k views
22 votes
Find the exact value of the expression.

Find the exact value of the expression.-example-1
User Dennie
by
7.7k points

2 Answers

3 votes

Explanation:

let


a = \cos {}^( - 1) ( (5)/(6) )


b = \tan {}^( - 1) ( (1)/(2) )


\sin(a - b) = \sin(a) \cos(b) - \cos(a) \sin(b)

Substitute


\sin( \cos {}^( - 1) ( (5)/(6) ) ) \cos( \tan {}^( - 1) ( (1)/(2) ) ) - \cos( \cos {}^( - 1) ( (5)/(6) ) ) \sin( \tan {}^( - 1) ( (1)/(2) ) )


( √(11) )/(6) (2)/( √(5) ) - (5)/(6) (1)/( √(5) )


( √(11) )/(6) ( 2√(5) )/(5) - (5 √(5) )/(30)


( 2√(11) √(5) - 5 √(5) )/(30)


( √(5) (2 √(11) - 5))/(30)

User Mazaher Muraj
by
8.0k points
7 votes


\sin(a-b)=\sin a \cos b-\cos a \sin b. If we let
a=\cos^(-1) \left((5)/(6) \right) and
b=\tan^(-1) \left((1)/(2) \right), then the given expression is equal to:


\sin \left(\cos^(-1) \left((5)/(6)} \right) \right) \cos \left(\tan^(-1) \left((1)/(2) \right) \right)-\cos\left(\cos^(-1) \left((5)/(6) \right) \right) \sin \left( \tan^(-1) \left((1)/(2) \right) \right)

Using the Pythagorean identities
\sin^(2) x+\cos^(2) x=1 and
\tan^(2) x+1=\sec^(2) x,


1) \sin^(2) \left(\cos^(-1) \left((5)/(6) \right) \right)+\cos^(2) \left(\cos^(-1) \left((5)/(6) \right) \right)=1\\\sin^(2) \left(\cos^(-1) \left((5)/(6) \right) \right)+(25)/(36)=1\\\sin^(2) \left(\cos^(-1) \left((5)/(6) \right) \right)=(11)/(36)\sin \left(\cos^(-1) \left((5)/(6) \right) \right)=(√(11))/(6)


2) \tan^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)+1=\sec^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)\\(1)/(4)+1=\sec^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)\\(5)/(4)=\sec^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)\\\sec \left(\tan^(-1) \left((1)/(2) \right) \right)=(√(5))/(2)\\\implies \cos \left(\tan^(-1) \left((1)/(2) \right) \right)=(2)/(√(5))=(2√(5))/(5)


\cos^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)+\sin^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)=1\\(4)/(5)+\sin^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)=1\\\sin^(2) \left(\tan^(-1) \left((1)/(2) \right) \right)=(1)/(5)\\\left(\tan^(-1) \left((1)/(2) \right) \right)=(1)/(√(5))=(√(5))/(5)

This means we can write the original expression as:


\left((√(11))/(6) \right) \left((2√(5))/(5) \right)-\left((5)/(6) \right) \left((√(5))/(5) \right)\\=(2√(11)√(5))/(30)-(5√(5))/(30)\\=\boxed{(√(5)(2√(11)-5))/(30)}

Find the exact value of the expression.-example-1
User Fabian Buch
by
8.0k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories