Answer:
The average rate of change is
Δy ÷ Δx = -20 ÷ 4
Δy/Δx = -20/4
= -5
Explanation:
Given the function
![h\left(x\right)\:=\:-x^2\:+\:3x\:+\:3](https://img.qammunity.org/2021/formulas/mathematics/college/vacl2deq9j61dp3vblq2n1hp8dfs8mv4qj.png)
Putting x = 6
![h\left(6\right)\:=\:-\left(6\right)^2\:+\:3\left(6\right)\:+\:3](https://img.qammunity.org/2021/formulas/mathematics/college/w6rx4he2porgov02321x6gam06tdjgys3m.png)
![=-36+18+3](https://img.qammunity.org/2021/formulas/mathematics/college/x0f2cdj5ou5b460y7d76bspgamdk654ti3.png)
![=-15](https://img.qammunity.org/2021/formulas/mathematics/college/wcidm1otlixsboe118pdf1tixwbtplmlft.png)
Putting x = 2
![h\left(2\right)\:=\:-\left(2\right)^2\:+\:3\left(2\right)\:+\:3](https://img.qammunity.org/2021/formulas/mathematics/college/c8nlq1naaqju0z50eh22cpc5mfaixrz03s.png)
![= -4 + 6 +3](https://img.qammunity.org/2021/formulas/mathematics/college/4gtaqc2x1h74jvd60ivra0ynfk0uodwect.png)
![= 5](https://img.qammunity.org/2021/formulas/mathematics/middle-school/y2kjwi72zj8nki6wm2ldrzkhl5br6nmkju.png)
The change in y from 2 to 6 is
Δy = -15 - 5
= -20
The interval from 2 to 6 has a width of
Δx = 6 - 2
= 4
Therefore, the average rate of change is
Δy ÷ Δx = -20 ÷ 4
Δy/Δx = -20/4
= -5