147k views
0 votes
Find all zeros to the following polynomial function. f(x)= 5x^4 -10x^3 +4x^2 -8x.

Please answer in detailed steps I’m confused.

User Smarr
by
5.4k points

1 Answer

1 vote

Answer:

Please check the explanation.

Explanation:

Given the function


f(x)= 5x^4 -10x^3 +4x^2 -8x

To determine the zeros, set f(x) = 0


0=\:5x^4\:-10x^3\:+4x^2\:-8x

switch sides


5x^4-10x^3+4x^2-8x=0

as


5x^4\:-10x^3\:+4x^2\:-8x=x\left(x-2\right)\left(5x^2+4\right)

so the equation becomes


x\left(x-2\right)\left(5x^2+4\right)=0

Using the zero factor principle:


\mathrm{\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)


x=0\quad \mathrm{or}\quad \:x-2=0\quad \mathrm{or}\quad \:5x^2+4=0

so solving


  • x=0


x-2=0


  • x=2

Therefore, the real zeros are:


x=0 and
x=2


5x^2+4=0 has all the imaginary zeros.

solving


5x^2+4=0


5x^2=-4


x^2=-(4)/(5)


\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=√(f\left(a\right)),\:\:-√(f\left(a\right))


x=\sqrt{-(4)/(5)},\:x=-\sqrt{-(4)/(5)}


x=i(2√(5))/(5),\:x=-i(2√(5))/(5)
√(-1)=i

Therefore, the total zeros are:


x=0,\:x=2,\:x=i(2√(5))/(5),\:x=-i(2√(5))/(5)

User Sadik Ali
by
4.9k points