Answer:
Please check the explanation.
Explanation:
Given the function
![f(x)= 5x^4 -10x^3 +4x^2 -8x](https://img.qammunity.org/2021/formulas/mathematics/high-school/kun3v1akblzwsb7c33eitzt3frakcg0ikf.png)
To determine the zeros, set f(x) = 0
![0=\:5x^4\:-10x^3\:+4x^2\:-8x](https://img.qammunity.org/2021/formulas/mathematics/high-school/j5n1542xlwqkdiuzer8ppg1817pa4b5t6q.png)
switch sides
![5x^4-10x^3+4x^2-8x=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/iqt3iylpiugzlf5rh5prk6nloozfc6tsnr.png)
as
![5x^4\:-10x^3\:+4x^2\:-8x=x\left(x-2\right)\left(5x^2+4\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tdvvrolq4itk95qr1ifo4l0x3xp416fynm.png)
so the equation becomes
![x\left(x-2\right)\left(5x^2+4\right)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/52klzmf5g9mh1ftxqvyj14y823hq7om96v.png)
Using the zero factor principle:
![\mathrm{\quad \:If}\:ab=0\:\mathrm{then}\:a=0\:\mathrm{or}\:b=0\:\left(\mathrm{or\:both}\:a=0\:\mathrm{and}\:b=0\right)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7t0w11otajid92h2ja2aoxg33gel6cj1l8.png)
![x=0\quad \mathrm{or}\quad \:x-2=0\quad \mathrm{or}\quad \:5x^2+4=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/msxs3eiyhadmilt73frzfpy9lsjuq7c5sd.png)
so solving
![x-2=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/vnhg9brl0dzu3c0cw9zzjc9m3ldn8btz5v.png)
Therefore, the real zeros are:
and
![x=2](https://img.qammunity.org/2021/formulas/mathematics/middle-school/l44oth01qqbnuop6qxtvmqlzuv7kvr7xrb.png)
has all the imaginary zeros.
solving
![5x^2+4=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/hrrjrsce6knn317ljc7yubapxubk3y39ht.png)
![5x^2=-4](https://img.qammunity.org/2021/formulas/mathematics/high-school/6zui4yz76xxwulm3dxupd10ir4lmd5sej5.png)
![x^2=-(4)/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/rrgft7n27vlsgs2i5s3w41imzrmxqksf44.png)
![\mathrm{For\:}x^2=f\left(a\right)\mathrm{\:the\:solutions\:are\:}x=√(f\left(a\right)),\:\:-√(f\left(a\right))](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ixe2w0mvukplst6nnefn5g1euivyzfkvpo.png)
![x=\sqrt{-(4)/(5)},\:x=-\sqrt{-(4)/(5)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/g29kib27i8tdtf7tyahet3aqa4ue7qvg86.png)
∵
![√(-1)=i](https://img.qammunity.org/2021/formulas/mathematics/middle-school/n68q4hjgrq4xn8nlr5b8pfjnd82ybjuwtf.png)
Therefore, the total zeros are:
![x=0,\:x=2,\:x=i(2√(5))/(5),\:x=-i(2√(5))/(5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/b54ru51e79p7jicmfk1l8847zqmul8ak6u.png)