122,415 views
14 votes
14 votes
PLEASE HELP!!! will give lots of points

For the three-part question that follows, provide your answer to each part in the given workspace. Identify each part with a coordinating response. Be sure to clearly label each part of your response as Pam
Part B, and Part C.
Use the following scenario to answer Part A, Part B, and Part C.
A gym class consists of 18 juniors and 12 seniors. Two students are randomly selected to be captains for a kickball game.
Part A: Calculate the probability that the first student selected is a junior. Show all work and round to the nearest tenth of a percent if necessary.
Part B: Calculate the probability that the second student is a senior given that the first student selected is a junior. Show all work and round to the nearest tenth of a percent if necessary.
Part C: Calculate the probability that the first student selected is a junior and the second student is a senior. Show all work and round to the nearest tenth of a percent if necessary.

PLEASE HELP!!! will give lots of points For the three-part question that follows, provide-example-1
User Espen Schulstad
by
2.3k points

1 Answer

13 votes
13 votes

Answer:

...

Explanation:

Partie A :

On commence par calculer l’effectif total des juniors + les séniors composant les équipes :

18+12=30 On déduis ensuite les deux capitaines donc 30-2=28.

Il reste donc 28 élèves a sélectionnée. La probabilité que ce soit un junior est de 17/28 donc 17 : 28= (environ) 0.6x100 donc 60%

Partie B :

On retire un junior de l’équipe donc 17-1=16 et un sénior donc 12-1=11.

Ce qui veut dire qu’il y a 11/27 de probabilités que ce soit un sénior qui soit sélectionnés.

11 :27=(environs) 0.4x100=40% . On aurait aussi pu le résoudre en faisant 100-60=40.

User Etienne Martin
by
3.2k points