192k views
23 votes
NO LINKS!! Verify each identity. Show work please





NO LINKS!! Verify each identity. Show work please ​-example-1
User Minks
by
3.0k points

2 Answers

3 votes

#33

LHS


\\ \rm\Rrightarrow (sin\theta)/(csc\theta)+(cos\theta)/(sec\theta)


\\ \rm\Rrightarrow (sin\theta)/((1)/(sin\theta))+(cos\theta)/((1)/(cos\theta))


\\ \rm\Rrightarrow sin^2\theta+cos^2\theta


\\ \rm\Rrightarrow 1

  • Proved

#34

  • Ø is taken as A for easy typing

LHS


\\ \rm\Rrightarrow tanAcsc^2A-tanA


\\ \rm\Rrightarrow (sinA)/(cosA)* (1)/(sin^2A)-(sinA)/(cosA)


\\ \rm\Rrightarrow (sinA)/(sin^2AcosA)-(sinA)/(cosA)


\\ \rm\Rrightarrow (1)/(sinAcosA)-(sinA)/(cosA)


\\ \rm\Rrightarrow (1-sin^2A)/(sinAcosA)


\\ \rm\Rrightarrow (cos^2A)/(sinAcosA)


\\ \rm\Rrightarrow (cosA)/(sinA)


\\ \rm\Rrightarrow cotA

Proved

User Heitor Chang
by
3.3k points
13 votes

Answer:

Trigonometric Identities used:


\csc \theta=(1)/(\sin \theta)


\sec \theta=(1)/(\cos \theta)


\cot \theta=(1)/(\tan \theta)


\sin^2 \theta + \cos^2 \theta=1


\csc^2 \theta = 1 + \cot^2 \theta

Question 33


\large \begin{aligned}(\sin \theta)/(\csc \theta)+(\cos \theta)/(\sec \theta)& = \sin \theta \cdot (1)/(\csc \theta)+\cos \theta \cdot (1)/(\sec \theta)\\\\& = \sin \theta \cdot (1)/((1)/(\sin \theta))+\cos \theta \cdot (1)/((1)/(\cos \theta))\\\\& = \sin \theta \cdot \sin \theta+\cos \theta \cdot \cos \theta\\\\& = \sin^2 \theta + \cos^2 \theta\\\\& = 1\end{aligned}

Question 34


\large \begin{aligned}\tan \theta \csc^2 \theta - \tan \theta & = \tan \theta ( \csc^2 \theta - 1)\\\\& = \tan \theta (1 + \cot^2 \theta -1)\\\\& = \tan \theta \cot^2 \theta \\\\& = (1)/(\cot \theta) \cdot \cot^2 \theta \\\\& = (\cot^2 \theta)/(\cot \theta)\\\\& = \cot \theta\end{aligned}

User Danielito
by
3.5k points