192k views
23 votes
NO LINKS!! Verify each identity. Show work please





NO LINKS!! Verify each identity. Show work please ​-example-1
User Minks
by
7.9k points

2 Answers

3 votes

#33

LHS


\\ \rm\Rrightarrow (sin\theta)/(csc\theta)+(cos\theta)/(sec\theta)


\\ \rm\Rrightarrow (sin\theta)/((1)/(sin\theta))+(cos\theta)/((1)/(cos\theta))


\\ \rm\Rrightarrow sin^2\theta+cos^2\theta


\\ \rm\Rrightarrow 1

  • Proved

#34

  • Ø is taken as A for easy typing

LHS


\\ \rm\Rrightarrow tanAcsc^2A-tanA


\\ \rm\Rrightarrow (sinA)/(cosA)* (1)/(sin^2A)-(sinA)/(cosA)


\\ \rm\Rrightarrow (sinA)/(sin^2AcosA)-(sinA)/(cosA)


\\ \rm\Rrightarrow (1)/(sinAcosA)-(sinA)/(cosA)


\\ \rm\Rrightarrow (1-sin^2A)/(sinAcosA)


\\ \rm\Rrightarrow (cos^2A)/(sinAcosA)


\\ \rm\Rrightarrow (cosA)/(sinA)


\\ \rm\Rrightarrow cotA

Proved

User Heitor Chang
by
8.1k points
13 votes

Answer:

Trigonometric Identities used:


\csc \theta=(1)/(\sin \theta)


\sec \theta=(1)/(\cos \theta)


\cot \theta=(1)/(\tan \theta)


\sin^2 \theta + \cos^2 \theta=1


\csc^2 \theta = 1 + \cot^2 \theta

Question 33


\large \begin{aligned}(\sin \theta)/(\csc \theta)+(\cos \theta)/(\sec \theta)& = \sin \theta \cdot (1)/(\csc \theta)+\cos \theta \cdot (1)/(\sec \theta)\\\\& = \sin \theta \cdot (1)/((1)/(\sin \theta))+\cos \theta \cdot (1)/((1)/(\cos \theta))\\\\& = \sin \theta \cdot \sin \theta+\cos \theta \cdot \cos \theta\\\\& = \sin^2 \theta + \cos^2 \theta\\\\& = 1\end{aligned}

Question 34


\large \begin{aligned}\tan \theta \csc^2 \theta - \tan \theta & = \tan \theta ( \csc^2 \theta - 1)\\\\& = \tan \theta (1 + \cot^2 \theta -1)\\\\& = \tan \theta \cot^2 \theta \\\\& = (1)/(\cot \theta) \cdot \cot^2 \theta \\\\& = (\cot^2 \theta)/(\cot \theta)\\\\& = \cot \theta\end{aligned}

User Danielito
by
8.5k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories