209k views
18 votes

y = ( √(3x) )/(1 + e^(2x) )
how would one differentiate this?


1 Answer

6 votes


~~~~~~~~y = (√(3x))/( 1+ e^(2x))\\\\\\\implies (dy)/(dx) = (d)/(dx) \left( (√(3x))/(1+ e^(2x)) \right)\\\\\\~~~~~~~~~~~~=((1 + e^(2x) ) (d)/(dx) \left(√(3x) \right) - \left(√(3x) \right)(d)/(dx)(1+e^(2x)))/(\left( 1+ e^(2x) \right)^2)~~~~~~~~~~~~;[\text{Quotient rule}]\\\\\\~~~~~~~~~~~~=((1+e^(2x)) \cdot (1)/(2√(3x)) \cdot 3-\left(√(3x) \right) \cdot 2 e^(2x))/((1 + e^(2x))^2)~~~~~~~~~~~~~~~~~~~~;[\text{Chain rule}]\\\\\\


=((\sqrt 3 (1 + e^(2x)))/(2\sqrt x) -2e^(2x) √(3x))/((1+e^(2x))^2)\\\\\\=\frac{\tfrac{\sqrt 3(1 +e^(2x)) - 4x\sqrt 3 e^(2x)}{2\sqrt x}}{(1+e^(2x))^2}\\\\\\=(\sqrt 3(1+e^(2x) -4xe^(2x)))/(2\sqrt x(1 +e^(2x))^2)

User Stickers
by
7.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories