Answer:
![\displaystyle log_(1)/(2)(64)=-6](https://img.qammunity.org/2021/formulas/mathematics/college/z73eqakrx4dmn19ul3govpwk40hgzjk4pm.png)
Explanation:
Properties of Logarithms
We'll recall below the basic properties of logarithms:
![log_b(1) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/dtp17phrg8n4onfzp88213tbx8tqxssul3.png)
Logarithm of the base:
![log_b(b) = 1](https://img.qammunity.org/2021/formulas/mathematics/college/kojhkkq36ctng2ghxdqqoe9pl3aaax05xl.png)
Product rule:
![log_b(xy) = log_b(x) + log_b(y)](https://img.qammunity.org/2021/formulas/mathematics/college/gc0ed72srk9qsgm0sp9dwq1ig2w5mfy45u.png)
Division rule:
![\displaystyle log_b((x)/(y)) = log_b(x) - log_b(y)](https://img.qammunity.org/2021/formulas/mathematics/college/1pnmcuhx0mjlk7deatl4vf65awkxfb8oln.png)
Power rule:
![log_b(x^n) = n\cdot log_b(x)](https://img.qammunity.org/2021/formulas/mathematics/college/4e6c12rf9vjh7g2z8k3l6ivrq7nbvy1zjk.png)
Change of base:
![\displaystyle log_b(x) = ( log_a(x))/(log_a(b))](https://img.qammunity.org/2021/formulas/mathematics/college/9sxnt1k72tvef5k1pxr5u92y5bhg2gm69m.png)
Simplifying logarithms often requires the application of one or more of the above properties.
Simplify
![\displaystyle log_(1)/(2)(64)](https://img.qammunity.org/2021/formulas/mathematics/college/tbq8dqgjgopbn0q9i66gomfveuq09n4dv5.png)
Factoring
.
![\displaystyle log_(1)/(2)(64)=\displaystyle log_(1)/(2)(2^6)](https://img.qammunity.org/2021/formulas/mathematics/college/hu6qq4l578sbo7e2eoim7tb95mtslt8y9g.png)
Applying the power rule:
![\displaystyle log_(1)/(2)(64)=6\cdot log_(1)/(2)(2)](https://img.qammunity.org/2021/formulas/mathematics/college/eyrmsdhz7k8innizrsqezzclyq970u057z.png)
Since
![\displaystyle 2=(1/2)^(-1)](https://img.qammunity.org/2021/formulas/mathematics/college/yhp4qkg3zbicxfb2uyx9cdl3wj5xxdv4m9.png)
![\displaystyle log_(1)/(2)(64)=6\cdot log_(1)/(2)((1/2)^(-1))](https://img.qammunity.org/2021/formulas/mathematics/college/vf08xpdv7adxutfcb4kgzkdab3r2rcrjlz.png)
Applying the power rule:
![\displaystyle log_(1)/(2)(64)=-6\cdot log_(1)/(2)((1)/(2))](https://img.qammunity.org/2021/formulas/mathematics/college/25cn53yonvva9kz6z9vcsci0dg8j08rvoc.png)
Applying the logarithm of the base:
![\mathbf{\displaystyle log_(1)/(2)(64)=-6}](https://img.qammunity.org/2021/formulas/mathematics/college/vc8ggpmywdrqhk8xfnkdngd0d9u93r7tag.png)