Answer:
A) 282.34 - j 12.08 Ω
B) 0.0266 + j 0.621 / unit
C)
A = 0.812 < 1.09° per unit
B = 164.6 < 85.42°Ω
C = 2.061 * 10^-3 < 90.32° s
D = 0.812 < 1.09° per unit
Step-by-step explanation:
Given data :
Z ( impedance ) = 0.03 i + j 0.35 Ω/km
positive sequence shunt admittance ( Y ) = j4.4*10^-6 S/km
A) calculate Zc
Zc =
=
=
= 282.6 < -2.45°
hence Zc = 282.34 - j 12.08 Ω
B) Calculate gl
gl =
d = 500
z = 0.03 i + j 0.35
y = j4.4*10^-6 S/km
gl =
![√(0.03 i + j 0.35* j4.4*10^-6) * 500](https://img.qammunity.org/2021/formulas/engineering/college/kmbn4dc4fza04glx1q4j6145ugrk7zvr5e.png)
=
![\sqrt{1.5456*10^(-6) < 175.1^0} * 500](https://img.qammunity.org/2021/formulas/engineering/college/z6vyuk5w7t51qzd1skrxl19ml9af5x9qc3.png)
= 0.622 < 87.55 °
gl = 0.0266 + j 0.621 / unit
C) exact ABCD parameters for this line
A = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )
B = Zc sin h (gl) Ω = 164.6 < 85.42°Ω ( as calculated )
C = 1/Zc sin h (gl) s = 2.061 * 10^-3 < 90.32° s ( as calculated )
D = cos h (gl) . per unit = 0.812 < 1.09° per unit ( as calculated )
where : cos h (gl) =
![(e^(gl) + e^(-gl) )/(2)](https://img.qammunity.org/2021/formulas/engineering/college/g38ul5xr8a0xzaaehn1kzsmeanyewodvgn.png)
sin h (gl) =
![(e^(gl)-e^(-gl) )/(2)](https://img.qammunity.org/2021/formulas/engineering/college/8yiltax760xsxjsia8hr31er7tr27grve6.png)