102k views
5 votes
A semiconductor, in thermal equilibrium, has a hole concentration of p0 = 2x1016 cm-3. The minority carrier life time = 3x10-7 s. (Assume, ni = 1010 cm-3)

(a) Determine the thermal equilibrium recombination rate of electrons.
(b) Determine the recombination rate of electrons if an excess electron concentration of În = 1013 cm-3 exists.
(c) Calculate the change in the recombination rate when excess electron concentration exists (compared to thermal equilibrium).

1 Answer

3 votes

Answer:


1.67* 10^(9)\ \text{cm}^(-3)\text{s}^(-1)


3.33* 10^(19)\ \text{cm}^(-3)\text{s}^(-1)


3.33* 10^(19)\ \text{cm}^(-3)\text{s}^(-1)

Step-by-step explanation:


p_0 = Hole concentration =
2* 10^(16)\ \text{cm}^(-3)


n_i = Intrinsic concentration =
10^(10)\ \text{cm}^(-3)


\tau_(n0) = Minority carrier life time =
3* 10^(-6)\ \text{s}


\delta n = Excess concentration of electrons =
10^(13)\ \text{cm}^(-3)

Majority carrier electron concentration is given by


n_0=(n_i^2)/(p_0)\\\Rightarrow n_0=((10^(10))^2)/(2* 10^(16))\\\Rightarrow n_0=5000\ \text{cm}^(-3)

Recombination rate is given by


R_(n0)=(n_0)/(\tau_(n0))\\\Rightarrow R_(n0)=(5000)/(3* 10^(-6))\\\Rightarrow R_(n0)=1.67* 10^(9)\ \text{cm}^(-3)\text{s}^(-1)

The recombination rate is
1.67* 10^(9)\ \text{cm}^(-3)\text{s}^(-1)

Recombination rate is given by


R_n=(\delta_n)/(\tau_(n0))\\\Rightarrow R_n=(10^(13))/(3* 10^(-7))\\\Rightarrow R_n=3.33* 10^(19)\ \text{cm}^(-3)\text{s}^(-1)

The recombination rate is
3.33* 10^(19)\ \text{cm}^(-3)\text{s}^(-1)

Change in the recombination rate is


\Delta R_n=3.33* 10^(19)-1.67* 10^(9)\\\Rightarrow \Delta R_n=3.33* 10^(19)\ \text{cm}^(-3)\text{s}^(-1)

The change in the recombination rate is
3.33* 10^(19)\ \text{cm}^(-3)\text{s}^(-1)

User Petagay
by
4.8k points