30.6k views
3 votes
NO LINKS!!! This is NOT MULTIPLE CHOICE!!!

13. y = (x + 1)^2 - 2

a. What type of function?

b. How do you translate the parent function to produce the equation? ​

NO LINKS!!! This is NOT MULTIPLE CHOICE!!! 13. y = (x + 1)^2 - 2 a. What type of function-example-1
User Koekiebox
by
8.1k points

2 Answers

11 votes

13.
y=(x-1)^(2) -2

a. Quadratic Function

b. The parent function is
y=x^(2). Shift
1 units to the left, shift
2 units downward.

-Hope this helped :)

User Rld
by
8.5k points
7 votes

Answer:

Given equation:
y=(x+1)^2-2

The function is a quadratic function in vertex form:
y=a(x-h)^2+k

Translations

For
a > 0


f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}


f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}


f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}


f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}

Parent function:
f(x)=x^2

Translations

Translated 1 unit left:
f(x+1)=(x+1)^2

Then translated 2 units down:
f(x)-2=(x+1)^2-2

Therefore, translate the parent function by 1 unit left and 2 units down to produce the given equation.

NO LINKS!!! This is NOT MULTIPLE CHOICE!!! 13. y = (x + 1)^2 - 2 a. What type of function-example-1
User Tomas Chabada
by
8.1k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories