30.6k views
3 votes
NO LINKS!!! This is NOT MULTIPLE CHOICE!!!

13. y = (x + 1)^2 - 2

a. What type of function?

b. How do you translate the parent function to produce the equation? ​

NO LINKS!!! This is NOT MULTIPLE CHOICE!!! 13. y = (x + 1)^2 - 2 a. What type of function-example-1
User Koekiebox
by
3.3k points

2 Answers

11 votes

13.
y=(x-1)^(2) -2

a. Quadratic Function

b. The parent function is
y=x^(2). Shift
1 units to the left, shift
2 units downward.

-Hope this helped :)

User Rld
by
4.3k points
7 votes

Answer:

Given equation:
y=(x+1)^2-2

The function is a quadratic function in vertex form:
y=a(x-h)^2+k

Translations

For
a > 0


f(x+a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units left}


f(x-a) \implies f(x) \: \textsf{translated}\:a\:\textsf{units right}


f(x)+a \implies f(x) \: \textsf{translated}\:a\:\textsf{units up}


f(x)-a \implies f(x) \: \textsf{translated}\:a\:\textsf{units down}

Parent function:
f(x)=x^2

Translations

Translated 1 unit left:
f(x+1)=(x+1)^2

Then translated 2 units down:
f(x)-2=(x+1)^2-2

Therefore, translate the parent function by 1 unit left and 2 units down to produce the given equation.

NO LINKS!!! This is NOT MULTIPLE CHOICE!!! 13. y = (x + 1)^2 - 2 a. What type of function-example-1
User Tomas Chabada
by
4.0k points