121k views
3 votes
Find the distance when y2=9, y1=13, x2=4, and x1=0.

User Marites
by
4.3k points

1 Answer

7 votes

Answer:

Tthe distance between
\left(x_1,\:y_1\right)=\left(0,\:13\right) and
\left(x_2,\:y_2\right)=\left(4,\:9\right) will be:


  • \mathrm{Distance\:between\:}\left(0,\:13\right)\mathrm{\:and\:}\left(4,\:9\right):\quad 4√(2)

Explanation:

Given the points


  • \left(x_1,\:y_1\right)=\left(0,\:13\right)

  • \left(x_2,\:y_2\right)=\left(4,\:9\right)


\mathrm{Compute\:the\:distance\:between\:}\left(x_1,\:y_1\right),\:\left(x_2,\:y_2\right):\quad √(\left(x_2-x_1\right)^2+\left(y_2-y_1\right)^2)


\mathrm{The\:distance\:between\:}\left(0,\:13\right)\mathrm{\:and\:}\left(4,\:9\right)\mathrm{\:is\:}


=√(\left(4-0\right)^2+\left(9-13\right)^2)


=√(4^2+4^2)


=√(4^2\cdot \:2)


\mathrm{Apply\:radical\:rule\:}\sqrt[n]{ab}=\sqrt[n]{a}\sqrt[n]{b},\:\quad \mathrm{\:assuming\:}a\ge 0,\:b\ge 0


=√(2)√(4^2)


\mathrm{Apply\:radical\:rule\:}\sqrt[n]{a^n}=a,\:\quad \mathrm{\:assuming\:}a\ge 0


=4√(2)

Therefore, the distance between
\left(x_1,\:y_1\right)=\left(0,\:13\right) and
\left(x_2,\:y_2\right)=\left(4,\:9\right) will be:


  • \mathrm{Distance\:between\:}\left(0,\:13\right)\mathrm{\:and\:}\left(4,\:9\right):\quad 4√(2)

User Lanna
by
5.2k points