35.4k views
4 votes
Let |u| = 10 at an angle of 45° and |v| = 13 at an angle of 150°, and w = u + v. What is the magnitude and direction angle of w?

|w| = 9.4; θ = 72.9°
|w| = 9.4; θ = 107.1°
|w| = 14.2; θ = 72.9°
|w| = 14.2; θ = 107.1°

Let |u| = 10 at an angle of 45° and |v| = 13 at an angle of 150°, and w = u + v. What-example-1

2 Answers

3 votes

Answer:

D) |w| = 14.2; θ = 107.1°

Explanation:

got it right on edge :)

Let |u| = 10 at an angle of 45° and |v| = 13 at an angle of 150°, and w = u + v. What-example-1
User Lbenitesanchez
by
5.7k points
2 votes

Given:


|u|=10 at an angle of 45°.


|v|=13 at an angle of 150°.


w=u+v

To find:

Magnitude and direction angle of w.

Solution:

We have,


w=u+v


\theta = 45^\circ, \phi = 150^\circ

Now,


u_x=|u|\cos \theta=10\cos 45^\circ=7.071


u_y=|u|\sin \theta=u_y=10\sin 45^\circ=7.071


v_x=|v|\cos \phi=13\cos 150^\circ=-11.25833


v_y=|v|\sin \phi=u_y=13\sin 150^\circ=6.5

Using these information, we get


R_x=u_x+v_x=7.071-11.25833=-4.18733


R_y=u_y+v_y=7.071+6.5=13.571


\text{Direction angle}=\tan^(-1)((R_y)/(R_x))


\text{Direction angle}=\tan^(-1)((13.571)/(-4.18733))


\text{Direction angle}=-72.8239


\text{Direction angle}=107.1476


\text{Direction angle}\approx 107.1

Now,


|w|=√((|u|\cos \theta +|v|\cos \phi)^2+(|u|\sin \theta +|v|\sin \phi)^2)


|w|=√((10\cos(45)+13\cos 150)^2+(10\sin(45)+13\sin 150)^2)


|w|=\sqrt{(10((1)/(√(2)))+13(-(√(3))/(2)))^2+(10((1)/(√(2)))+13((1)/(2)))^2}


|w|=14.20236


|w|\approx 14.20236

Therefore, the correct option is D.

User Lpratlong
by
4.9k points