93.3k views
24 votes
For each circle , work out​

For each circle , work out​-example-1

1 Answer

7 votes

Answer:

Formulas


\textsf{Area of a circle}=\pi r^2 \quad \textsf{(where r is the radius)}


\textsf{Area of a semicircle}=(1)/(2)\pi r^2 \quad \textsf{(where r is the radius)}


\textsf{Circumference of a circle}=\sf 2 \pi r\quad\textsf{(where r is the radius)}


\textsf{Radius of a circle}=\sf (1)/(2)d\quad\textsf{(where d is the diameter)}


\textsf{Perimeter of a semicircle}=r(\pi +2) \quad \textsf{(where r is the radius)}

Use the above formulas to calculate the various measurements, remembering to calculate the radius first when given the diameter.

Question 9

a) Radius = 2.7 cm


\implies \textsf{Area}=\sf \pi (2.7)^2=22.9\:\:cm^2\:(1\:d.p.)


\implies \textsf{Circumference}=\sf 2 \pi (2.7)=17.0\:\:cm\:(1\:d.p.)

-----------------------------------------------------------------------

b) Diameter = 45 mm


\sf \implies Radius =(45)/(2)=22.5\:\:mm


\implies \sf Area= \pi (22.5)^2=1590.4\:\:mm^2\:(1\:d.p.)


\implies \sf Circumference= 2 \pi (22.5)=141.4\:\:mm\:(1\:d.p.)

Question 10

a) Radius = 8.5 cm


\implies \sf Area=(1)/(2)\pi (8.5)^2=113.5\:\:cm\:(1\:d.p.)


\sf \implies Perimeter=8.5(\pi +2)=43.7\:\:cm\:(1\:d.p.)

-----------------------------------------------------------------------

b) Radius = 24 mm


\implies \sf Area=(1)/(2)\pi (24)^2=904.8\:\:mm\:(1\:d.p.)


\sf \implies Perimeter=24( \pi +2)=123.4\:\:cm\:(1\:d.p.)

-----------------------------------------------------------------------

c) Diameter = 32 cm


\sf \implies Radius =(32)/(2)=16\:\:cm


\implies \sf Area=(1)/(2)\pi (16)^2=402.1\:\:cm\:(1\:d.p.)


\sf \implies Perimeter=16( \pi +2)=82.3\:\:cm\:(1\:d.p.)

-----------------------------------------------------------------------

d) Diameter = 15 m


\sf \implies Radius =(15)/(2)=7.5\:\:m


\implies \sf Area=(1)/(2)\pi (7.5)^2=88.4\:\:m\:(1\:d.p.)


\sf \implies Perimeter=7.5( \pi +2)=38.6\:\:m\:(1\:d.p.)

User Ahmed Farghal
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories