103k views
4 votes
Find the antiderivative of f (x) = 10x4 + 12.5.

User Badawi
by
5.6k points

1 Answer

3 votes

Answer:

The anti-derivative of f(x) will be:


\int \:10x^4+12.5dx=2x^5+12.5x+C

Explanation:

Given the function


\:f\left(x\right)=10x^4\:+\:12.5

Taking the anti-derivative of f(x)


\int \left(10x^4\:+\:12.5\right)\:dx\:


\mathrm{Apply\:the\:Sum\:Rule}:\quad \int f\left(x\right)\pm g\left(x\right)dx=\int f\left(x\right)dx\pm \int g\left(x\right)dx


\int \left(10x^4\:+\:12.5\right)\:dx\:=\int \:10x^4dx+\int \:12.5dx

Solving


\int 10x^4dx


\mathrm{Take\:the\:constant\:out}:\quad \int a\cdot f\left(x\right)dx=a\cdot \int f\left(x\right)dx


=10\cdot \int \:x^4dx


\mathrm{Apply\:the\:Power\:Rule}:\quad \int x^adx=(x^(a+1))/(a+1),\:\quad \:a\\e -1


=2x^5

similarly,


\int 12.5dx


\mathrm{Integral\:of\:a\:constant}:\quad \int adx=ax


=12.5x

so substituting these values


\int \left(10x^4\:+\:12.5\right)\:dx\:=\int \:10x^4dx+\int \:12.5dx


=2x^5+12.5x


=2x^5+12.5x+C ∵ Add constant to the solution

Therefore, the anti-derivative of f(x) will be:


\int \:10x^4+12.5dx=2x^5+12.5x+C

User Irrelephant
by
6.3k points