179k views
3 votes
Which function is the result of translating f(x) = x^2 + 14 to the right 5 units and down 6 units?

A) y = (x - 5)^2 + 6
B) y = (x - 5)^2 - 6
C) y= (x - 5)^2 + 8
D) y= (x - 5)^2 + 20

2 Answers

3 votes

Answer:

C) y= (x - 5)^2 + 8

Explanation:

User Connor Spangler
by
8.1k points
0 votes

Answer:

C.

Explanation:

Transformations within the quadratic is given by the form:


y=a(x-h)^2+k

Where a is the vertical stretch, h is the horizontal translations, and k is the vertical translations.

We have:


y=x^2+14

If we translate this 5 units to the right, we are letting h=5. This yields:


y=(x-5)^2+14

If we shift the function down 6 units, we are subtracting 6 from the function. This will yield:


y=(x-5)^2+14-6

Subtract:


y=(x-5)^2+8

Therefore, our answer is C.

User Christopher Powell
by
7.8k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories