Answer:
Proof below
Explanation:
Trigonometric Identities
Prove that:

We need to use the following basic identities:
![\sin^2x+\cos^2x=1\qquad\qquad [1]](https://img.qammunity.org/2021/formulas/mathematics/college/n6pljtltdcxzygzl5sb7ajxyr4pnx1j8hm.png)
![\displaystyle \sec x=(1)/(\cos x)\qquad\qquad [2]](https://img.qammunity.org/2021/formulas/mathematics/college/h463292hh4rtsor9mzrka45ht3d7dlo9v7.png)
![\displaystyle \csc x=(1)/(\sin x)\qquad\qquad [3]](https://img.qammunity.org/2021/formulas/mathematics/college/i2dsw4hh7wa38b6k1l03skf2lftlyjx4gk.png)
Operating on the left side:

Applying [1]:

Separating fractions:

Simplifying the second term:

Applying [2] and [3]

Rearranging:

Hence proved.