99.2k views
5 votes
((sinx+cosx)^2)/sinxcosx=2+secxcosecx​

User Jiri Kriz
by
5.6k points

1 Answer

2 votes

Answer:

Proof below

Explanation:

Trigonometric Identities

Prove that:


\displaystyle ((\sin x+\cos x)^2)/(\sin x\cos x)=2+\sec x\csc x

We need to use the following basic identities:


\sin^2x+\cos^2x=1\qquad\qquad [1]


\displaystyle \sec x=(1)/(\cos x)\qquad\qquad [2]


\displaystyle \csc x=(1)/(\sin x)\qquad\qquad [3]

Operating on the left side:


\displaystyle ((\sin x+\cos x)^2)/(\sin x\cos x)=(\sin^2 x+2\cos x\sin x+\cos^2x)/(\sin x\cos x)

Applying [1]:


\displaystyle ((\sin x+\cos x)^2)/(\sin x\cos x)=(1+2\cos x\sin x)/(\sin x\cos x)

Separating fractions:


\displaystyle ((\sin x+\cos x)^2)/(\sin x\cos x)=(1)/(\sin x\cos x)+(2\cos x\sin x)/(\sin x\cos x)

Simplifying the second term:


\displaystyle ((\sin x+\cos x)^2)/(\sin x\cos x)=(1)/(\sin x\cos x)+2

Applying [2] and [3]


\displaystyle ((\sin x+\cos x)^2)/(\sin x\cos x)=\csc x\sec x+2

Rearranging:


\displaystyle ((\sin x+\cos x)^2)/(\sin x\cos x)=2+\sec x\csc x

Hence proved.

User Laka
by
4.4k points