Answer:
The answer is
![2 \cos(100) + i \sin(100)](https://img.qammunity.org/2023/formulas/mathematics/high-school/5hd2w44j39mftf5tta2jqvto2livjdwk2r.png)
Explanation:
This is a complex number,
![a + bi](https://img.qammunity.org/2023/formulas/mathematics/high-school/amd5nzz0l0cqrkv6ntou6aryb0gt174vca.png)
First, convert this to de movire form.
![r( \cos( \alpha ) + i \sin( \alpha )](https://img.qammunity.org/2023/formulas/mathematics/high-school/r1k1xf4bt6evb8v1w8bbt5rrwbnjvw7zbc.png)
where
![r = \sqrt{ {a}^(2) + {b}^(2) }](https://img.qammunity.org/2023/formulas/mathematics/college/lo1c6o8krhy7trkslv9xbt0ycp2f8qf9xc.png)
and
![\alpha = \tan {}^( - 1) ( (b)/(a) )](https://img.qammunity.org/2023/formulas/mathematics/high-school/3drnd91xu6khvvk6vts20nodoit0fezzxs.png)
![a = 4](https://img.qammunity.org/2023/formulas/mathematics/college/ny3tr66ili58kgxjexhc5phai3tl6qe8s8.png)
![b = - 4 √( 3) i](https://img.qammunity.org/2023/formulas/mathematics/high-school/fba2psdw400lkekjoe1wsiw88ynbr7ofpg.png)
![r = \sqrt{ {4}^(2) + ( - 4 √(3)) {}^(2) }](https://img.qammunity.org/2023/formulas/mathematics/high-school/mncft9pkxjsvzxkklvaa9g5y2zxrcv8exk.png)
![r = √(16 + 48)](https://img.qammunity.org/2023/formulas/mathematics/high-school/hzndbybggzc0cst0w5hqfwwumdiglh2cav.png)
![r = √(64) = 8](https://img.qammunity.org/2023/formulas/mathematics/high-school/dtvd9ghy1b8wb58eqfbyh8wvvh4mt22u5a.png)
and
![\alpha = \tan {}^( - 1) ( ( - 4 √(3) )/(4) )](https://img.qammunity.org/2023/formulas/mathematics/high-school/gsynhuijtblvwsq45dichz94f911g2rr49.png)
![\alpha = \tan {}^( - 1) ( - √(3) )](https://img.qammunity.org/2023/formulas/mathematics/high-school/2ytgj5f34i2awj5j1hw7m1sf70ftqbsume.png)
Here, our a is positive and b is negative so our angle in degrees must lie in the fourth quadrant, that angle is 300 degrees.
So
![\alpha = 300](https://img.qammunity.org/2023/formulas/mathematics/high-school/niuwsq4cw88qlthugu5qzrt44y4botzuzh.png)
So our initially form is
![8( \cos(300) + i \sin(300) )](https://img.qammunity.org/2023/formulas/mathematics/high-school/ei6gs028cuwpqi961f0hcbyhlcrgz7fr07.png)
Now, we use the roots of unity formula. To do this, we first take the cube root of the modulus, 8,
![\sqrt[3]{8} = 2](https://img.qammunity.org/2023/formulas/mathematics/high-school/b10jabmbct3m14pzdd29nvn384s9hhowip.png)
Next, since cos and sin have a period of 360 we add 360 to each degree then we divide it by 3.
![\sqrt[3]{8} ( \cos( (300 + 360n)/(3) ) + \sin( (300 + 360n)/(3) )](https://img.qammunity.org/2023/formulas/mathematics/high-school/hxqsypcs28eipznr3j8s8h481qcozdlgbl.png)
![2 \cos(100 + 120n) + i \sin(100 + 120n)](https://img.qammunity.org/2023/formulas/mathematics/high-school/pbxu8cr9s3qowlgetayqkblg25pzvoj9vt.png)
Since 100 is in the second quadrant, we let n=0,
![2 \cos(100) + i \sin(100)](https://img.qammunity.org/2023/formulas/mathematics/high-school/5hd2w44j39mftf5tta2jqvto2livjdwk2r.png)