Answer:
y = 2x^2 + 8x + 3
Explanation:
Step 1: use the vertex form of the quadratic equation
y = a*(x - h)^2 + k
vertex = (-2, -5) = (h, k)
y = a*(x + 2)^2 - 5
Step 2: determine a using the given point
point = (0, 3)
y = a*(x + 2)^2 - 5
3 = a*(0+2)^2 - 5
3 + 5 = a*(2)^2
8 = a*4
a = 2
vertex equation is now y = 2*(x + 2)^2 - 5
Step 3: simplify vertex equation to standard quadratic equation
quadratic equation = Ax^2 + Bx + C
y = 2*(x + 2)^2 - 5
y = 2*(x^2 + 4x + 4) - 5
y = 2x^2 + 8x + 8 - 5
y = 2x^2 + 8x + 3