Answer:

General Formulas and Concepts:
Algebra I
- Terms/Coefficients
- Factoring/Expanding
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Derivative Property [Addition/Subtraction]:
![\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]](https://img.qammunity.org/2021/formulas/mathematics/college/kqosumt4896r7x44jgtw0o7kk6g4d3irvr.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Step-by-step explanation:
Step 1: Define
Identify

Step 2: Differentiate
- Expand:

- Derivative Property [Addition/Subtraction]:
![\displaystyle (dy)/(dx) = (d)/(dx)[4x^5] - (d)/(dx)[20x^3] - (d)/(dx)[7x^2]](https://img.qammunity.org/2021/formulas/history/college/rco1yzmuvbfhtf1d2qq692l9dp3kkcosig.png)
- Derivative Property [Multiplied Constant]:
![\displaystyle (dy)/(dx) = 4(d)/(dx)[x^5] - 20(d)/(dx)[x^3] - 7(d)/(dx)[x^2]](https://img.qammunity.org/2021/formulas/history/college/xcu386sojlkeuff6ocmjiringp0jl6f6iy.png)
- Basic Power Rule:

- Simplify:

- Factor:

Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation
Book: College Calculus 10e