155k views
2 votes
Differentiate the following
4x²(x³ - 5x) - 7x²?​

User Cmlndz
by
5.0k points

1 Answer

2 votes

Answer:


\displaystyle (dy)/(dx) = 2x(10x^3 - 30x - 7)

General Formulas and Concepts:

Algebra I

  • Terms/Coefficients
  • Factoring/Expanding

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Multiplied Constant]:
\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Step-by-step explanation:

Step 1: Define

Identify


\displaystyle 4x^2(x^3 - 5x) - 7x^2

Step 2: Differentiate

  1. Expand:
    \displaystyle 4x^5 - 20x^3 - 7x^2
  2. Derivative Property [Addition/Subtraction]:
    \displaystyle (dy)/(dx) = (d)/(dx)[4x^5] - (d)/(dx)[20x^3] - (d)/(dx)[7x^2]
  3. Derivative Property [Multiplied Constant]:
    \displaystyle (dy)/(dx) = 4(d)/(dx)[x^5] - 20(d)/(dx)[x^3] - 7(d)/(dx)[x^2]
  4. Basic Power Rule:
    \displaystyle (dy)/(dx) = 4(5x^4) - 20(3x^2) - 7(2x)
  5. Simplify:
    \displaystyle (dy)/(dx) = 20x^4 - 60x^2 - 14x
  6. Factor:
    \displaystyle (dy)/(dx) = 2x(10x^3 - 30x - 7)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentiation

Book: College Calculus 10e

User Nico Burns
by
5.0k points