113k views
1 vote
A cylindrical bar of metal having a diameter of 19.2 mm and a length of 207 mm is deformed elastically in tension with a force of 52900 N. Given that the elastic modulus and Poisson's ratio of the metal are 61.4 GPa and 0.34, respectively, determine the following:

a. The amount by which this specimen will elongate in the direction of the applied stress.
b. The change in diameter of the specimen. Indicate an increase in diameter with a positive number and a decrease with a negative number.

1 Answer

1 vote

Answer:

1)ΔL = 0.616 mm

2)Δd = 0.00194 mm

Step-by-step explanation:

We are given;

Force; F = 52900 N

Initial length; L_o = 207 mm = 0.207 m

Diameter; d_o = 19.2 mm = 0.0192 m

Elastic modulus; E = 61.4 GPa = 61.4 × 10^(9) N/m²

Now, from Hooke's law;

E = σ/ε

Where; σ is stress = force/area = F/A

A = πd²/4 = π × 0.0192²/4

A = 0.00009216π

σ = 52900/0.00009216π

ε = ΔL/L_o

ε = ΔL/0.207

Thus,from E = σ/ε, we have;

61.4 × 10^(9) = (52900/0.00009216π) ÷ (ΔL/0.207)

Making ΔL the subject, we have;

ΔL = (52900 × 0.207)/(61.4 × 10^(9) × 0.00009216π)

ΔL = 0.616 × 10^(-3) m

ΔL = 0.616 mm

B) Poisson's ratio is given as;

υ = ε_x/ε_z

ε_x = Δd/d_o

ε_z = ΔL/L_o

Thus;

υ = (Δd/d_o) ÷ (ΔL/L_o)

Making Δd the subject gives;

Δd = (υ × d_o × ΔL)/L_o

We are given Poisson's ratio to be 0.34.

Thus;

Δd = (0.34 × 19.2 × 0.616)/207

Δd = 0.00194 mm

User Bauroziq
by
5.2k points