Answer:
![\angle C \cong \angle M](https://img.qammunity.org/2021/formulas/mathematics/high-school/dn8fclql3lpfz29h6mipx641adyl8dl5tg.png)
![\angle G \cong \angle P](https://img.qammunity.org/2021/formulas/mathematics/high-school/s0onnlannv949oa2bh7u1d7u31hi3q74aj.png)
![\angle I \cong \angle R](https://img.qammunity.org/2021/formulas/mathematics/high-school/bmqp37w1dp74e9x6mbi2f48rorjkfc6ars.png)
![\overline{CG} \cong \overline{MP}](https://img.qammunity.org/2021/formulas/mathematics/high-school/wnm6fp3y4itmssxsg8be6jeyllosb4dygk.png)
![\overline{GI} \cong \overline{PR}](https://img.qammunity.org/2021/formulas/mathematics/high-school/um9vbyoi1bwzp4zdram2mwnm8l97fcvu8z.png)
![\overline{CI} \cong \overline{MR}](https://img.qammunity.org/2021/formulas/mathematics/high-school/6rz5k5ncbme9mehg11tvptogvnwhmrtxcl.png)
Explanation:
Given the congruence statement ∆CGI
∆MPR, it follows that the corresponding sides of both ∆s are equal, as well as the corresponding vertices or angles. It implies that ∆CGI and ∆MPR are of the same shape and size.
✅Thus, the 6 pairs of the corresponding congruent parts of ∆CGI and ∆MPR are:
![\angle C \cong \angle M](https://img.qammunity.org/2021/formulas/mathematics/high-school/dn8fclql3lpfz29h6mipx641adyl8dl5tg.png)
![\angle G \cong \angle P](https://img.qammunity.org/2021/formulas/mathematics/high-school/s0onnlannv949oa2bh7u1d7u31hi3q74aj.png)
![\angle I \cong \angle R](https://img.qammunity.org/2021/formulas/mathematics/high-school/bmqp37w1dp74e9x6mbi2f48rorjkfc6ars.png)
![\overline{CG} \cong \overline{MP}](https://img.qammunity.org/2021/formulas/mathematics/high-school/wnm6fp3y4itmssxsg8be6jeyllosb4dygk.png)
![\overline{GI} \cong \overline{PR}](https://img.qammunity.org/2021/formulas/mathematics/high-school/um9vbyoi1bwzp4zdram2mwnm8l97fcvu8z.png)
![\overline{CI} \cong \overline{MR}](https://img.qammunity.org/2021/formulas/mathematics/high-school/6rz5k5ncbme9mehg11tvptogvnwhmrtxcl.png)