Given:
The edge length of a cube is changing at a rate of 10 in/sec.
To find:
The rate by which cube's volume changing when the edge length is 3 inches.
Solution:
We have,
![(da)/(dt)=10\text{ in/sec}](https://img.qammunity.org/2021/formulas/mathematics/college/bok41gge0jbkb06n9e2d36vddcnxv5tr9g.png)
We know that, volume of cube is
![V=a^3](https://img.qammunity.org/2021/formulas/mathematics/high-school/yrodvpq82xsotuf33ig89od4xee6fzvk0d.png)
Differentiate with respect to t.
![(dV)/(dt)=3a^2(da)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/f6vsshf10i5uuh4u2lclk77qkw692qgh3z.png)
Substituting
and a=3, we get
![(dV)/(dt)_(a=3)=3(3)^2(10)](https://img.qammunity.org/2021/formulas/mathematics/college/ckl6b7r1h7js66l63sxli9ki7qs4eh60f3.png)
![(dV)/(dt)_(a=3)=3(9)(10)](https://img.qammunity.org/2021/formulas/mathematics/college/corpqvmzbo86dgm1x6xtr4712qfl6yu7lw.png)
![(dV)/(dt)_(a=3)=270](https://img.qammunity.org/2021/formulas/mathematics/college/mfd6yhoirzzcpb3nlacj8qlvcby4phqn84.png)
Therefore, the volume increased by 270 cubic inches per sec.