118k views
5 votes
>I'm sorry but how do I do this?

Solving the equation of the form a cos 0 + b sin 0 = c

Question;
Solve the equation 4 sin 20 - 3 cos 20 = 3, for 0° ses 360°​

User Dapaz
by
7.8k points

1 Answer

6 votes

Answer:

θ = 36.9°, 90°, 216.9°, or 270°

Explanation:

4 sin 2θ − 3 cos 2θ = 3

Use double angle formulas:

4 (2 sin θ cos θ) − 3 (cos²θ − sin²θ) = 3

8 sin θ cos θ − 3 cos²θ + 3 sin²θ = 3

Use Pythagorean identity:

8 sin θ cos θ − 3 cos²θ + 3 sin²θ = 3 (sin²θ + cos²θ)

8 sin θ cos θ − 3 cos²θ + 3 sin²θ = 3 sin²θ + 3 cos²θ

8 sin θ cos θ − 6 cos²θ = 0

2 cos θ (4 sin θ − 3 cos θ) = 0

2 cos θ = 0

θ = 90° or 270°

4 sin θ − 3 cos θ = 0

4 sin θ = 3 cos θ

tan θ = 3/4

θ = 36.9° or 216.9°

User Dmytro Titov
by
8.6k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories