Answer:
θ = 36.9°, 90°, 216.9°, or 270°
Explanation:
4 sin 2θ − 3 cos 2θ = 3
Use double angle formulas:
4 (2 sin θ cos θ) − 3 (cos²θ − sin²θ) = 3
8 sin θ cos θ − 3 cos²θ + 3 sin²θ = 3
Use Pythagorean identity:
8 sin θ cos θ − 3 cos²θ + 3 sin²θ = 3 (sin²θ + cos²θ)
8 sin θ cos θ − 3 cos²θ + 3 sin²θ = 3 sin²θ + 3 cos²θ
8 sin θ cos θ − 6 cos²θ = 0
2 cos θ (4 sin θ − 3 cos θ) = 0
2 cos θ = 0
θ = 90° or 270°
4 sin θ − 3 cos θ = 0
4 sin θ = 3 cos θ
tan θ = 3/4
θ = 36.9° or 216.9°