10.4k views
1 vote
If f(x) = 16x – 30 and g(x) = 14x – 6, for which value of x does (f – g)(x) = 0? –18 –12 12 18

User MrColes
by
7.7k points

1 Answer

3 votes

Answer:

Option 3: 12 is the correct answer.

Explanation:

Given functions are:


f(x) = 16x-30\\g(x) = 14x-6

In order to find the value of x on which (f-g)(x) will be zero, first of all we have to find (f-g)(x) and then equate it equal to zero to find the value of that will make (f-g)(x)

So,


(f-g)(x) = f(x) - g(x)\\= (16x-30)-(14x-6)\\=16x-30-14x+6\\= 2x-24

Now to find the value of x on which (f-g)(x) will be zero, putting (f-g)(x) = 0


(f-g)(x) = 0\\2x-24 = 0

Adding 24 on both sides


2x-24+24 = 0+24\\2x = 24

Dividing both sides by 2


(2x)/(2) = (24)/(2)\\x = 12

For x=12, (f-g)(x) will be zero.

Hence,

Option 3: 12 is the correct answer.

User Ruslan Mansurov
by
7.9k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories