6.7k views
1 vote
Given the sum of the interior angles of a polygon, tell the number of sides of the polygon.

If the interior angle sum is 360°, the polygon has _
sides.
If the interior angle sum is 540°, the polygon has _
sides.
If the interior angle sum is 900°, the polygon has _
sides.
If the interior angle sum is 1260°, the polygon has _
sides.

User Callisto
by
8.3k points

2 Answers

3 votes

Answer:


\underline{the \: sides \: are} \: \to \\ \underline{ \boxed{ n= 4}} \\ \: \underline{ \boxed{ n= 5}} \\ \:\underline{ \boxed{ n= 7}} \\ \: \underline{ \boxed{ n= 9}} \\ \:

Explanation:


\\ the \: sum \:o f \: the\: interior \: angles \: of \: aregular \: polygon \: \\ is \: generaly \: given \: by \to \: 180(n - 2)\\ \underline{ \boxed {case \:( 1) \to}} \\ If \: the \: interior \: angle \: sum \: is \: 360°, \\ then : \: the \: polygon \: has \to \: \\ 180(n - 2) = 360 \\ n - 2 = 2 \\ \underline{ \boxed{ n= 4}} \\ \: \underline{ \boxed {case \:( 2) \to}} \\ If \: the \: interior \: angle \: sum \: is \: 540°, \\ then : \: the \: polygon \: has \to \: \\ 180(n - 2) = 540 \\ n - 2 = 3 \\ \underline{ \boxed{ n= 5}} \\ \: \underline{ \boxed {case \:( 3) \to}} \\ If \: the \: interior \: angle \: sum \: is \: 900°, \\ then : \: the \: polygon \: has \to \: \\ 180(n - 2) = 900 \\ n - 2 = 5 \\ \underline{ \boxed{ n= 7}} \\ \: \underline{ \boxed {case \:(final ) \to}} \\ If \: the \: interior \: angle \: sum \: is \: 1260°, \\ then : \: the \: polygon \: has \to \: \\ 180(n - 2) = 1260 \\ n - 2 = 7\\ \underline{ \boxed{ n= 9}} \\ \:

♨Rage♨

User Al Johri
by
9.0k points
5 votes

Answer:

4,5,7,9

Explanation:

Got it right on edge

User Michael Ortiz
by
8.0k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories