6.7k views
1 vote
Given the sum of the interior angles of a polygon, tell the number of sides of the polygon.

If the interior angle sum is 360°, the polygon has _
sides.
If the interior angle sum is 540°, the polygon has _
sides.
If the interior angle sum is 900°, the polygon has _
sides.
If the interior angle sum is 1260°, the polygon has _
sides.

User Callisto
by
4.5k points

2 Answers

3 votes

Answer:


\underline{the \: sides \: are} \: \to \\ \underline{ \boxed{ n= 4}} \\ \: \underline{ \boxed{ n= 5}} \\ \:\underline{ \boxed{ n= 7}} \\ \: \underline{ \boxed{ n= 9}} \\ \:

Explanation:


\\ the \: sum \:o f \: the\: interior \: angles \: of \: aregular \: polygon \: \\ is \: generaly \: given \: by \to \: 180(n - 2)\\ \underline{ \boxed {case \:( 1) \to}} \\ If \: the \: interior \: angle \: sum \: is \: 360°, \\ then : \: the \: polygon \: has \to \: \\ 180(n - 2) = 360 \\ n - 2 = 2 \\ \underline{ \boxed{ n= 4}} \\ \: \underline{ \boxed {case \:( 2) \to}} \\ If \: the \: interior \: angle \: sum \: is \: 540°, \\ then : \: the \: polygon \: has \to \: \\ 180(n - 2) = 540 \\ n - 2 = 3 \\ \underline{ \boxed{ n= 5}} \\ \: \underline{ \boxed {case \:( 3) \to}} \\ If \: the \: interior \: angle \: sum \: is \: 900°, \\ then : \: the \: polygon \: has \to \: \\ 180(n - 2) = 900 \\ n - 2 = 5 \\ \underline{ \boxed{ n= 7}} \\ \: \underline{ \boxed {case \:(final ) \to}} \\ If \: the \: interior \: angle \: sum \: is \: 1260°, \\ then : \: the \: polygon \: has \to \: \\ 180(n - 2) = 1260 \\ n - 2 = 7\\ \underline{ \boxed{ n= 9}} \\ \:

♨Rage♨

User Al Johri
by
5.5k points
5 votes

Answer:

4,5,7,9

Explanation:

Got it right on edge

User Michael Ortiz
by
4.8k points