24.4k views
6 votes
Consider the linear system:


\overrightarrow y'=\begin{bmatrix}-6 & -4 \\12 & 8\end{bmatrix}\overrightarrow y


a. Find the eigenvalues and eigenvectors for the coefficient matrix.

b. For each eigenpair in the previous part, form a solution of
\overrightarrow y' = A\overrightarrow y. Use
t as the independent variable in your answers.

c. Does the set of solutions you found form a fundamental set (i.e., linearly independent set) of solutions?

User AnthonyF
by
8.5k points

1 Answer

9 votes

a. If A is the coefficient matrix, solve det(A - λI) = 0 for the eigenvalues λ :


\det\begin{bmatrix}-6-\lambda & -4 \\ 12 & 8-\lambda\end{bmatrix} = (-6-\lambda)(8-\lambda)+48 = 0 \implies \lambda(\lambda-2)=0


\implies \lambda = 0, \lambda = 2

Let v = [v₁, v₂]ᵀ be the eigenvector corresponding to λ. Solve Av = λv for v :


\lambda=0 \implies \begin{bmatrix}-6&-4\\12&8\end{bmatrix}\begin{bmatrix}v_1\\v_2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} \implies 3v_1 + 2v_2 = 0

If we pick v₂ = -3, then v₁ = 2, so [2, -3]ᵀ is the eigenvector for λ = 0.


\lambda = 2 \implies \begin{bmatrix}-8&-4\\12&6\end{bmatrix}\begin{bmatrix}v_1\\v_2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} \implies 2v_1 + v_2 = 0

Let v₁ = 1, so v₂ = -2.

b. λ = 0 and v = [2, -3]ᵀ contributes a constant solution,


\vec y_1 = e^(\lambda t) v = \begin{bmatrix}2\\-3\end{bmatrix}

while λ = 2 and v = [1, -2]ᵀ contribute a solution of the form


\vec y_2 = e^(\lambda t) v = e^(2t) \begin{bmatrix}1\\-2\end{bmatrix}

c. Yes; compute the Wronskian of the two fundamental solutions:


W(1, e^(2t)) = \det\begin{bmatrix}1 & e^(2t) \\ 0 & 2e^(2t)\end{bmatrix} = 2e^(2t) \\eq 0

The Wronskian is non-zero, so the solutions are independent.

User Sam Su
by
8.4k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories