a. If A is the coefficient matrix, solve det(A - λI) = 0 for the eigenvalues λ :
![\det\begin{bmatrix}-6-\lambda & -4 \\ 12 & 8-\lambda\end{bmatrix} = (-6-\lambda)(8-\lambda)+48 = 0 \implies \lambda(\lambda-2)=0](https://img.qammunity.org/2023/formulas/mathematics/college/jh97aqozntk28yytzzyxk9pqr1qhxgr27v.png)
![\implies \lambda = 0, \lambda = 2](https://img.qammunity.org/2023/formulas/mathematics/college/86hpntkw7le9qcdpg1dkaml2j8y2vouflk.png)
Let v = [v₁, v₂]ᵀ be the eigenvector corresponding to λ. Solve Av = λv for v :
![\lambda=0 \implies \begin{bmatrix}-6&-4\\12&8\end{bmatrix}\begin{bmatrix}v_1\\v_2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} \implies 3v_1 + 2v_2 = 0](https://img.qammunity.org/2023/formulas/mathematics/college/9lajwntphv09wxp3qnid19n8klgnru02za.png)
If we pick v₂ = -3, then v₁ = 2, so [2, -3]ᵀ is the eigenvector for λ = 0.
![\lambda = 2 \implies \begin{bmatrix}-8&-4\\12&6\end{bmatrix}\begin{bmatrix}v_1\\v_2\end{bmatrix} = \begin{bmatrix}0\\0\end{bmatrix} \implies 2v_1 + v_2 = 0](https://img.qammunity.org/2023/formulas/mathematics/college/iatfzp9ow3i7mhpk19li90zted3yj4wj0w.png)
Let v₁ = 1, so v₂ = -2.
b. λ = 0 and v = [2, -3]ᵀ contributes a constant solution,
![\vec y_1 = e^(\lambda t) v = \begin{bmatrix}2\\-3\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/v01aoqkh41ih37l6igckkr9eyl80wwoybp.png)
while λ = 2 and v = [1, -2]ᵀ contribute a solution of the form
![\vec y_2 = e^(\lambda t) v = e^(2t) \begin{bmatrix}1\\-2\end{bmatrix}](https://img.qammunity.org/2023/formulas/mathematics/college/7m6jvgm4zce08sd6ys4r5hoqb1op3opype.png)
c. Yes; compute the Wronskian of the two fundamental solutions:
![W(1, e^(2t)) = \det\begin{bmatrix}1 & e^(2t) \\ 0 & 2e^(2t)\end{bmatrix} = 2e^(2t) \\eq 0](https://img.qammunity.org/2023/formulas/mathematics/college/8t4357702azhdaw3gixlfdgrq8t20qkpqp.png)
The Wronskian is non-zero, so the solutions are independent.