Answer:
![32.10\ \text{mph}](https://img.qammunity.org/2021/formulas/mathematics/college/fwcvxs1bttj2rdc31eoaqn8lcmycfbopdq.png)
Explanation:
Distance traveled by A in 4 hours =
![24* 4=96\ \text{mi}=a](https://img.qammunity.org/2021/formulas/mathematics/college/mzdbcui956hklsmtipivz4ovp8ebrlhb7g.png)
Distance traveled by B in 4 hours =
![22* 4=88\ \text{mi}=b](https://img.qammunity.org/2021/formulas/mathematics/college/uz7img4pzr7e6kdxwsuxodtkgubia79hzf.png)
Total distance between A and the initial point of B is
![40+96=136\ \text{mi}](https://img.qammunity.org/2021/formulas/mathematics/college/8qm4wg9vtjzonj8uf0jvg93arjm0qjbemv.png)
Distance between A and B 4 hours later
![c=√(136^2+88^2)\ \text{mi}](https://img.qammunity.org/2021/formulas/mathematics/college/uj1ura79ugbcqls89zzqamg8is90fqubf2.png)
From Pythagoras theorem we have
![(a+40)^2+b^2=c^2](https://img.qammunity.org/2021/formulas/mathematics/college/3yl4s2njzcvncue4ubmgljbcxhxcrb6qxm.png)
Differentiating with respect to time we get
![2(a+40)(da)/(dt)+2b(db)/(dt)=2c(dc)/(dt)\\\Rightarrow (a+40)(da)/(dt)+b(db)/(dt)=c(dc)/(dt)\\\Rightarrow (dc)/(dt)=((a+40)(da)/(dt)+b(db)/(dt))/(c)\\\Rightarrow (dc)/(dt)=((96+40)*24+88* 22)/(√(136^2+88^2))\\\Rightarrow (dc)/(dt)=32.10\ \text{mph}](https://img.qammunity.org/2021/formulas/mathematics/college/tu00bx2vchu9z886fpmdeduvnb8192rlvq.png)
So, the the distance between the ships at 4 PM is changing at
![32.10\ \text{mph}](https://img.qammunity.org/2021/formulas/mathematics/college/fwcvxs1bttj2rdc31eoaqn8lcmycfbopdq.png)